Зависимость тангенса от котангенса. Тригонометрические функции

Тангенс (tg x) и котангенс (ctg x) – свойства, графики, формулы

Зависимость тангенса от котангенса. Тригонометрические функции

Справочные данные по тангенсу (tg x) и котангенсу (ctg x). Геометрическое определение, свойства, графики, формулы. Таблица тангенсов и котангенсов, производные, интегралы, разложения в ряды. Выражения через комплексные переменные. Связь с гиперболическими функциями.

Геометрическое определение ⇓
Тангенс ⇓
   График функции тангенс, y = tg x ⇓
Котангенс ⇓
   График функции котангенс, y = ctg x ⇓
Свойства тангенса и котангенса ⇓
   Периодичность ⇓
   Четность ⇓
   Области определения и значений, возрастание, убывание ⇓
Формулы ⇓
   Выражения через синус и косинус ⇓
   Формулы тангенса и котангенс от суммы и разности ⇓
   Произведение тангенсов ⇓
   Формула суммы и разности тангенсов ⇓
Таблица тангенсов и котангенсов ⇓
Выражения через комплексные числа ⇓
Выражения через гиперболические функции ⇓
Производные ⇓
Интегралы ⇓
Разложения в ряды ⇓
Обратные функции ⇓
      Арктангенс, arctg ⇓
      Арккотангенс, arcctg ⇓

См. также:

 

Синус, косинус – свойства, графики, формулы
Обратные тригонометрические функции, их графики и формулы

|BD| –  длина дуги окружности с центром в точке A.
α – угол, выраженный в радианах.

Тангенс (tg α) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB|.
Котангенс (ctg α) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC|.

Тангенс

,    где n – целое.

В западной литературе тангенс обозначается так:
. Также приняты следующие обозначения:

;

;
.

Котангенс

,    где n – целое.

В западной литературе котангенс обозначается так:
. Также приняты следующие обозначения:

;

;
.

Периодичность

Функции   y = tg x   и   y = ctg x   периодичны с периодом   π.

Четность

Функции тангенс и котангенс – нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n – целое).

y = tg xy = ctg x
Область определения и непрерывность
Область значений –∞ < y < +∞ –∞ < y < +∞
Возрастание
Убывание
Экстремумы
Нули, y = 0
Точки пересечения с осью ординат, x = 0y = 0

Формулы тангенса и котангенс от суммы и разности

Остальные формулы легко получить, например

Таблица тангенсов и котангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Производные

;     .

Производная n-го порядка по переменной x от функции :
.
Производная n-го порядка по переменной x от функции :
.
Вывод формул для тангенса > > >;     для котангенса > > >

Разложения в ряды

Чтобы получить разложение тангенса по степеням x, нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга,   . При этом получаются следующие формулы.

  при  .

  при  .
где Bn – числа Бернулли. Они определяются либо из рекуррентного соотношения:
;
;
где   . Либо по формуле Лапласа:

Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс, соответственно.

Арккотангенс, arcctg

,   где n – целое.

Использованная литература: И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Источник: https://1cov-edu.ru/mat_analiz/funktsii/tangens/

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы. Теория. урок. Алгебра 11 Класс

Зависимость тангенса от котангенса. Тригонометрические функции

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Теория

Конспект урока

Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности.

Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е.

мы вправе называть синус, косинус, тангенс и котангенс именно функциями.

На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.

Что касается свойств тригонометрических функций, то особое внимание следует обратить на:

– область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;

– периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.

Рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция нечетная ;

4) Функция не является монотонной на всей своей области определения;

5) Функция периодична с периодом .

Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции.

Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что  Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Теперь рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция четная  Из этого следует симметричность графика функции относительно оси ординат;

4) Функция не является монотонной на всей своей области определения;

5) Функция периодична с периодом .

Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции.

Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что  С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Перейдем к функции:

Основные свойства этой функции:

1) Область определения  кроме , где . Мы уже указывали в предыдущих уроках, что  не существует. Это утверждение можно обобщить, учитывая период тангенса;

2) Область значений , т.е. значения тангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;

5) Функция периодична с периодом 

Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е.  и т.д.

Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный .

Это видно по тому, что каждая ветка получается смещением соседней на  вдоль оси абсцисс.

И завершаем рассмотрением функции:

Основные свойства этой функции:

1) Область определения  кроме , где . По таблице значений тригонометрических функций мы уже знаем, что  не существует. Это утверждение можно обобщить, учитывая период котангенса;

2) Область значений , т.е. значения котангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

5) Функция периодична с периодом 

Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е.  и т.д.

Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает.

Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

У них период равен . И о функциях:

У них период равен .

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.

Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике.

Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения.

 

Запишем простейшее тригонометрическое уравнение:

Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут  и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

1)

2)

3)

4)

Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует. 

Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо  по очереди все целые числа.

Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.

Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

 и

.

К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

Например, решением уравнения  является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.

Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:

1) Простейшие, например, ;

2) Частные случаи простейших уравнений, например, ;

3) Уравнения со сложным аргументом, например, ;

4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя, например, ;

5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций, например, ;

6) Уравнения, сводящиеся к простейшим с помощью замены, например, ;

7) Однородные уравнения, например, ;

8) Уравнения, которые решаются с использованием свойств функций, например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;

А также уравнения, которые решаются с использованием различных методов.

Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.

Наиболее часто встречаются системы следующих типов:

1) В которых одно из уравнений степенное, например, ;

2) Системы из простейших тригонометрических уравнений, например, .

На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.

В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.

Вставка 1. Решение частных случаев простейших тригонометрических уравнений.

Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:

 и

имеют более простые решения, чем дают формулы общих решений.

Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .

Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.

Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла  попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?

Для этого необходимо к уже отложенному углу добавить развернутый угол . Второй угол, который является решением уравнения, равен . Но нельзя забывать, что это еще не все, т.к.

мы можем построить угол больший полного круга, и он еще раз попадет в первую точку и также будет решением нашего уравнения. Для этого необходимо прибавить ко второму вычисленному углу еще раз , и получим значение .

Продолжать эти действия можно бесконечное количество раз.

Если выписать первые три полученных нами корня уравнения, то можно увидеть закономерность:

, , , …и выписать формулу для всех корней:

Как видим, эта формула действительно выглядит проще общего решения уравнения с косинусом, хотя бы потому, что в ней отсутствует «». Однако это не значит, что общая формула даст неверное решение.

Аналогично можно получить решения для всех остальных указанных частных случаев тригонометрических уравнений.

Полезные ссылки:

1)  Алгебра 9 класс: “Функция y=sinx, её свойства и график” 

2)  Алгебра 9 класс: “Функция y=cosx. Её свойства и график” 

3)  Алгебра 9 класс: “Функция y=cos t, её свойства и график” 

4)  Алгебра 9 класс: “Простейшие тригонометрические уравнения и сопутствующие задачи” 

5)  Алгебра 9 класс: “Элементы теории тригонометрических функций. Функция y=sinx” 

6)  Алгебра 9 класс: “Элементы теории тригонометрических функций. Функция y=cosx” 

7)  Алгебра 10 класс: “Функция y=sinx, ее основные свойства и график” 

8)  Алгебра 10 класс: “Функция y=sinx, её свойства, график и типовые задачи” 

9)  Алгебра 10 класс: “Функция y=cos t, её основные свойства и график” 

10) Алгебра 10 класс: “Функция y=cos t, её свойства, график и типовые задачи” 

11) Алгебра 10 класс: “Периодичность функций y=sin t, y=cos t” 

12) Алгебра 10 класс: “Как построить график функции y=m*f(x), если известен график функции y=f(x)” 

13) Алгебра 10 класс: “Как построить график функции y=f(kx), если известен график функции y=f(x)” 

14) Алгебра 10 класс: “Как построить график функции y=f(kx), если известен график функции y=f(x). Примеры построения” 

15) Алгебра 10 класс: “График гармонического колебания” 

16) Алгебра 10 класс: “Функция y=tgx, ее свойства и график” 

17) Алгебра 10 класс: “Функция y=сtgx, ее свойства и график” 

18) Алгебра 10 класс: “Первые представления о решении тригонометрических уравнений” 

19) Алгебра 10 класс: “Простейшие тригонометрические уравнения” 

Источник: https://interneturok.ru/lesson/algebra/11-klass/bzadachi-iz-egeb/urok-10-trigonometricheskie-funktsii-trigonometricheskie-uravneniya-i-ih-sistemy-teoriya

Синус, косинус, тангенс и котангенс в тригонометрии: определения, формулы, примеры, угол поворота

Зависимость тангенса от котангенса. Тригонометрические функции

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии. 

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии. 

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) – отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cosα) – отношение прилежащего катета к гипотенузе.

Тангенс угла (tg α) – отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию. 

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса – вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin) угла поворота

Синус угла поворота α – это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α – это абсцисса точки A1(x , y). cos α=х

Тангенс (tg) угла поворота

Тангенс угла поворота α – это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котангенс угла поворота α – это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом.

Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом.

 Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят “синус угла поворота α”. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α – это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс.

В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y).

Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Источник: https://Zaochnik.com/spravochnik/matematika/trigonometrija/sinus-kosinus-tangens-i-kotangens/

Основные тригонометрические тождества

Зависимость тангенса от котангенса. Тригонометрические функции

  • Справочник
  • Тригонометрия
  • Основные тригонометрические тождества

Тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

\[ \sin{2}\alpha + \cos{2} \alpha = 1 \]

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \dfrac{\cos \alpha}{\sin \alpha} \]

\[ tg \alpha \cdot ctg \alpha = 1 \]

Зависимость между синусом и косинусом

\[ \sin{2} \alpha+\cos{2} \alpha=1 \]

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha},\enspace ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \]

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой \( \dfrac{y}{x}=\dfrac{\sin \alpha}{\cos \alpha} \), а отношение \( \dfrac{x}{y}=\dfrac{\cos \alpha}{\sin \alpha} \) — будет являться котангенсом.

Добавим, что только для таких углов \( \alpha \), при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества \( tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \), \( ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \).

Например: \( tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \) является справедливой для углов \( \alpha \), которые отличны от \( \dfrac{\pi}{2}+\pi z \), а \( ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \) — для угла \( \alpha \), отличного от \( \pi z \), \( z \) — является целым числом.

Зависимость между тангенсом и котангенсом

\[ tg \alpha \cdot ctg \alpha=1 \]

Данное тождество справедливо только для таких углов \( \alpha \), которые отличны от \( \dfrac{\pi}{2} z \). Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что \( tg \alpha = \dfrac{y}{x} \), а \( ctg \alpha=\dfrac{x}{y} \). Отсюда следует, что \( tg \alpha \cdot ctg \alpha = \dfrac{y}{x} \cdot \dfrac{x}{y}=1 \). Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

\( tg{2} \alpha + 1=\dfrac{1}{\cos{2} \alpha} \) — сумма квадрата тангенса угла \( \alpha \) и \( \alpha \), отличных от \( \dfrac{\pi}{2}+ \pi z \).

\( 1+ctg{2} \alpha=\dfrac{1}{\sin{2}\alpha} \) — сумма \( \alpha \), равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \( \alpha \), отличного от \( \pi z \).

ТригонометрияМатематика Тригонометрия Формулы Теория

Найдите \( \sin \alpha \) и \( tg \alpha \), если \( \cos \alpha=-\dfrac12 \) и \( \dfrac{\pi}{2} < \alpha < \pi \);

Функции \( \sin \alpha \) и \( \cos \alpha \) связывает формула \( \sin{2}\alpha + \cos{2} \alpha = 1 \). Подставив в эту формулу \( \cos \alpha = -\dfrac12 \), получим:

\( \sin{2}\alpha + \left (-\dfrac12 \right )2 = 1 \)

Это уравнение имеет 2 решения:

\( \sin \alpha = \pm \sqrt{1-\dfrac14} = \pm \dfrac{\sqrt 3}{2} \)

По условию \( \dfrac{\pi}{2} < \alpha < \pi \). Во второй четверти синус положителен, поэтому \( \sin \alpha = \dfrac{\sqrt 3}{2} \).

Для того, чтобы найти \( tg \alpha \), воспользуемся формулой \( tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \). Соответствующие величины нам известны.

\( tg \alpha = \dfrac{\sqrt 3}{2} : \dfrac12 = \sqrt 3 \)

Найдите \( \cos \alpha \) и \( ctg \alpha \), если \( \sin \alpha=\dfrac{\sqrt3}{2} \) и \( \dfrac{\pi}{2} < \alpha < \pi \).

Подставив в формулу \( \sin{2}\alpha + \cos{2} \alpha = 1 \) данное по условию число \( \sin \alpha=\dfrac{\sqrt3}{2} \), получаем \( \left (\dfrac{\sqrt3}{2}\right ){2} + \cos{2} \alpha = 1 \). Это уравнение имеет два решения \( \cos \alpha = \pm \sqrt{1-\dfrac{3}{4}}=\pm\sqrt{\dfrac{1}{4}} \).

По условию \( \dfrac{\pi}{2} < \alpha < \pi \). Во второй четверти косинус отрицателен, поэтому \( \cos \alpha = -\sqrt{\dfrac{1}{4}}=-\dfrac{1}{2} \).

Для того, чтобы найти \( ctg \alpha \), воспользуемся формулой \( ctg \alpha = \dfrac{\cos \alpha}{\sin \alpha} \). Соответствующие величины нам известны.

\( ctg \alpha = -\dfrac12 : \dfrac{\sqrt3}{2} = -\dfrac{1}{\sqrt 3} \).

Не можешь написать работу сам?

Доверь её нашим специалистам

от 100 р.стоимость заказа

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

  • Что такое угол. Понятие угла: радиан, градусУглом в один градус называют центральный угол в окружности, опирающийся на круговую дугу, равную 1/360 части окружности. Углом в 1 радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности.
  • Прямоугольный треугольник: синус, косинус, тангенс, котангенс углаСинус угла – это отношение противолежащего (дальнего) катета к гипотенузе. Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе. Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому). Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).
  • Основные формулы тригонометрииОсновное тригонометрическое тождество, синус суммы и разности, косинус суммы и разности. Основные формулы тригонометрии.
  • Значения тригонометрических функцийЗначения тригонометрических функций для основных углов: 0, 30, 45, 60, 90, 120, 180, 270 и 360 градусов
  • Для измерения углов используются градусы или радианы.
  • Соотношения между тригонометрическими функциями Знак тригонометрической функции в левой части должен совпадать со знаком правой части.
  • Периодичность тригонометрических функцийТригонометрические функции sin(x) и cos(x) являются периодическими, с наименьшим периодом равным 2*π. Тригонометрические функции tg(x) и ctg(x) являются периодическими, с наименьшим периодом равным π.
  • Сколько в ампере ватт, как перевести амперы в ватты и киловаттыМощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с. Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде.
  • Лошадиная сила — единица мощности. Она примерно равна значению в 75 кгс/м/с., что соответствует усилию, которое необходимо затратить для подъёма груза в 75 кг. на высоту одно метра за одну секунду.
  • В «современном» латинском алфавите 26 букв.
  • Перевод чисел из одной системы счисления в любую другую онлайнКалькулятор переводит числа из одной системы счисления в любую другую.
  • Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними.
  • Что такое дюйм? Чему равен 1 дюйм?Дюйм – это длина, которая соответствует 2,54 сантиметра (приблизительно 25 миллиметров)
  • Тангенс и котангенс. Формулы и определение Тангенс tg(x) — это отношение синуса sin(x) к косинусу cos(x). Котангенс ctg(x) — это отношение косинуса cos(x) к синусу sin(x).

Источник: https://calcsbox.com/post/osnovnye-trigonometriceskie-tozdestva.html

Геометрия. Урок 1. Тригонометрия

Зависимость тангенса от котангенса. Тригонометрические функции

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

-уроки на канале Ёжику Понятно.

страницы:

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат. 

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).

Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.

Рассмотрим прямоугольный треугольник AOB:

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x.

  (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.

Координата по оси x – косинус угла, координата по оси y – синус угла.

Пример:

cos 150 ° = − 3 2

sin 150 ° = 1 2

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

30° 45° 60° 90°
sinα 0 12 22 32 1
cosα 1 32 22 12 0
tgα 0 33 1 3 нет
ctgα нет 3 1 33 0

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β:

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Скачать домашнее задание к уроку 1.

Источник: https://epmat.ru/modul-geometriya/urok-1-trigonometriya/

Мед-Центр Здоровье
Добавить комментарий