Когда нужно менять синус на косинус. Формулы приведения

Формулы приведения: доказательство, примеры, мнемоническое правило

Когда нужно менять синус на косинус. Формулы приведения

Данная статья посвящена подробному изучению тригонометрических формул приведения. Дан полный список формул приведения, показаны примеры их использования, приведено доказательство верности формул. Также в статье дано мнемоническое правило, которое позволяет выводить формулы приведения, не запоминая каждую формулу.

Формулы приведения. Список

Фомулы приведения позволяют приводить основные тригонометрические функции углов произвольной величины к функциям углов, лежащих в интервале от 0 до 90 градусов (от 0 до π2 радиан). Оперировать углами от 0 до 90 градусов гораздо удобнее, чем работать со сколь угодно большими значениями, поэтому формулы приведения широко применяются при решении задач тригонометрии. 

Прежде, чем мы запишем сами формулы, уточним несколько важных для понимания моментов.

  • Аргументами тригонометрических функций в формулах приведения являются угды вида ±α+2π·z, π2±α+2π·z, 3π2±α+2π·z. Здесь z – любое целое число, а α – произвольный угол поворота.
  • Не обязательно учить все формулы приведения, количество которых довольно внушительно. Существует мнемоническое правило, которо позволяет легко вывести нужную формулу. Речь о мнемоническом правиле пойдет позже.

Теперь перейдем непосредственно к формулам приведения.

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов. запишем все формулы в виде таблицы.

Формулы приведения

sinα+2πz=sinα, cosα+2πz=cosαtgα+2πz=tgα, ctgα+2πz=ctgαsin-α+2πz=-sinα, cos-α+2πz=cosαtg-α+2πz=-tgα, ctg-α+2πz=-ctgαsinπ2+α+2πz=cosα, cosπ2+α+2πz=-sinαtgπ2+α+2πz=-ctgα, ctgπ2+α+2πz=-tgαsinπ2-α+2πz=cosα, cosπ2-α+2πz=sinαtgπ2-α+2πz=ctgα, ctgπ2-α+2πz=tgαsinπ+α+2πz=-sinα, cosπ+α+2πz=-cosαtgπ+α+2πz=tgα, ctgπ+α+2πz=ctgαsinπ-α+2πz=sinα, cosπ-α+2πz=-cosαtgπ-α+2πz=-tgα, ctgπ-α+2πz=-ctgαsin3π2+α+2πz=-cosα, cos3π2+α+2πz=sinαtg3π2+α+2πz=-ctgα, ctg3π2+α+2πz=-tgαsin3π2-α+2πz=-cosα, cos3π2-α+2πz=-sinαtg3π2-α+2πz=ctgα, ctg3π2-α+2πz=tgα

 В данном случае формулы записаны с радианами. Однако можно записать их и с использованием градусов. Достаточно только перевести радианы в градусы, заменив π на 180 градусов.

Примеры использования формул приведения

Покажем, как пользоваться формулами приведения и как указанные формулы применяются при решении практических примеров.

Угол под знаком тригонометрической функции можно представить не одним, а множеством способов. Например, аргумент тригонометрической функции может быть представлен в видах ±α+2πz, π2±α+2πz, π±α+2πz, 3π2±α+2πz. Продемонстрируем это.

Возьмем угол α=16π3. Это угол можно записать так:

α=16π3=π+π3+2π·2α=16π3=-2π3+2π·3α=16π3=3π2-π6+2π

В зависимости от представления угла используется соответствующая формула приведения.

Возьмем тот же угол α=16π3 и вычислим его тангенс

Пример 1. Использование формул приведения

α=16π3, tg α=?

Представим угол  α=16π3 в виде α=π+π3+2π·2

Этому представлению угла будет соответствовать формула приведения

tg(π+α+2πz)=tg α

Получим

tg 16π3=tgπ+π3+2π·2=tgπ3

Воспользовавшись таблицей, укажем значение тангенса

tgπ3=3

Теперь используем другое представление угла α=16π3.

Пример 2. Использование формул приведения

α=16π3, tg α=?α=-2π3+2π·3tg16π3=tg-2π3+2π·3=-tg2π3=-(-3)=3

Наконец, для третьего представления угла запишем

Пример 3. Использование формул приведения

α=16π3=3π2-π6+2πtg3π2-α+2πz=ctg αtg α=tg (3π2-π6+2π)=ctgπ6=3

Теперь приведем пример на использование формул приведения посложнее

Пример 4. Использование формул приведения

Представим sin 197° через синус и косинус острого угла.

Для того, чтобы можно было применять формулы приведения, нужно представить угол α=197° в одном из видов

±α+360°·z, 90°±α+360°·z, 180°±α+360°·z, 270°±α+360°·z. Согласно условию задачи, угол должен быть острым. Соответственно, у нас есть два способа для его представления:

197°=180°+17°197°=270°-73°

Получаем

sin197°=sin(180°+17°)sin197°=sin(270°-73°)

Теперь посмотрим на формулы приведения для синусов и выберем соответствующие

sin(π+α+2πz)=-sinαsin(3π2-α+2πz)=-cosαsin 197°=sin(180°+17°+360°·z)=-sin17°sin 197°=sin(270°-73°+360°·z)=-cos73°

Мнемоническое правило

Формул приведения много, и, к счастью, нет необходимости заучивать их наизусть. Существуют закономерности, по которым можно выводить формулы приведения для разных углов и тригонометрических функций. Эти закономерности называются мнемоническим правилом. Мнемоника – искусство запоминания. Мнемоническое правило состоит из трех частей, или содержит три этапа.

Мнемоническое правило

1. Аргумент исходной функции представляется в одном из видов

±α+2πzπ2±α+2πzπ±α+2πz3π2±α+2πz

Угол α должен лежать в пределах от 0 до 90 градусов. 

2. Определяется знак исходной тригонометрической функции. Такой же знак будет иметь функция, записываемая в правой части формулы.

3. Для углов ±α+2πz и π±α+2πz название исходной функции остается неизменным, а для углов π2±α+2πz и 3π2±α+2πz соответственно меняется на “кофункцию”. Синус – на косинус. Тангенс – на котангенс.

Чтобы пользоваться мнемоническим праилом для формул приведения нужно уметь определять знаки тригонометрических функций по четвертям единичной окружности. Разберем примеры применения мнемонического правила. 

Пример 1. Использование мнемонического правила

Запишем формулы приведения для cosπ2-α+2πz и tgπ-α+2πz. α – улог первой четверти.

1. Так как по условию α – улог первой четверти, мы пропускаем первый пункт правила.

2. Определим знаки функций cosπ2-α+2πz и tgπ-α+2πz. Угол π2-α+2πz также является углом первой четверти, а угол π-α+2πz находится во второй четверти. В первой четверти функция косинуса положительна, а тангенс во второй четверти имеет знак минус. Запишем, как будут выглядеть искомые формулы на этом этапе.

 cosπ2-α+2πz=+tgπ-α+2πz=-

3. Согласно третьему пункту для угла π2-α+2π название функции изменяется на конфуцию, а для угла π-α+2πz остается прежним. Запишем:

cosπ2-α+2πz=+sin αtgπ-α+2πz=-tg α

А теперь заглянем в формулы, приведенные выше, и убедимся в том, что мнемоническое правило работает.

Рассмотрим  пример с конкретным углом α=777°. Приведем синус альфа к тригонометрической функции острого угла.

Пример 2. Использование мнемонического правила

1. Представим углол α=777° в необходимом виде

777°=57°+360°·2777°=90°-33°+360°·2

2. Исходный угол – угол первой четверти. Значит, синус угла имеет положительный знак. В итоге имеем:

3. sin 777°=sin(57°+360°·2)=sin 57°sin 777°=sin(90°-33°+360°·2)=cos 33°

Теперь рассмотрим пример, который показывает, как важно правильно определить знак тригонометрической функции и правильно представить угол при использовании мнемонического правила. Повторим еще раз.

Важно! 

Угол α должен быть острым!

Вычислим тангенс угла 5π3. Из таблицы значений основных тригонометрических функций можно сразу взять значение tg 5π3=-3, но мы применим мнемоническое правило.

Пример 3. Использование мнемонического правила

tg 5π3=?

Представим угол α=5π3 в необходимом виде и воспользуемся правилом

tg 5π3=tg3π2+π6=-ctgπ6=-3tg 5π3=tg2π-π3=-tgπ3=-3

Если же представить угол альфа в виде 5π3=π+2π3, то результат применениея мнемонического правила будет неверным.

tg 5π3=tgπ+2π3=-tg2π3=-(-3)=3

Неверный результат обусловлен тем, что угол 2π3 не явдяется острым.

Формулы приведения. Доказательство

Доказательство формул приведения основывается на свойствах периодичности и симметричности тригонометрических функций, а также на свойстве сдвига на углы π2 и 3π2. Доказательство справедливости всех формул приведения иожно проводить без учета слагаемого 2πz, так как оно обозначает изменение угла на целое число полных оборотов и как раз отражает свойство периодичности.

Первые 16 формул следуют напрямую из свойств основных тригонометрических функций: синуса, косинуса, тангенса и котанганса. 

Приведем доказательство формул приведения для синусов  и косинусов

sinπ2+α=cos α и cosπ2+α=-sin α

Посмотрим на единичную окружность, начальная точка которой после повоторота на угол α перешла в точку A1x, y, а после поворота на угол π2+α – в точку A2. Из обеих точек проведем перпендикуляры к оси абсцисс.

Два прямоугольных треугольника OA1H1 и OA2H2 равны по гипотенузе и прилежащим к ней углам. Из расположения точек на окружности и равенства треугольников можно сделать вывод о том, что точка A2 имеет координаты A2-y, x. Используя определения синуса и косинуса, запишем:

sin α=y, cosα=x, sinπ2+α=x, cosπ2+α=y

Отсюда

sinπ2+α=cos α, cosπ2+α=-sinα

С учетом основных тождеств тригонометрии и только что доказанного, можно записать

tgπ2+α=sinπ2+αcosπ2+α=cos α-sin α=-ctg αctgπ2+α=cosπ2+αsinπ2+α=-sin αcosα=-tg α

Для доказательства формул приведения с аргументом π2-α его необходимо представить в виде π2+(-α). Например:

cosπ2-α=cosπ2+(-α)=-sin(-α)=sinα

В доказательстве используются свойства тригонометрических функций с аргументами, противоположными по знаку.

Все остальные формулы приведения можно доказать на базе записанных выше.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/trigonometrija/formuly-privedenija/

Формулы приведения тригонометрических функций

Когда нужно менять синус на косинус. Формулы приведения

Формулы приведения — это соотношения, которые позволяют перейти от тригонометрических функций синус, косинус, тангенс и котангенс с углами `\frac {\pi}2 \pm \alpha`, `\pi \pm \alpha`, `\frac {3\pi}2 \pm \alpha`, `2\pi \pm \alpha` к этим же функциям угла `\alpha`, который находится в первой четверти единичной окружности. Таким образом, формулы приведения «приводят» нас к работе с углами в пределе от 0 до 90 градусов, что очень удобно.

Формулы приведения: список и таблицы

Всех вместе формул приведения есть 32 штуки. Они несомненно пригодятся на ЕГЭ, экзаменах, зачетах. Но сразу предупредим, что заучивать наизусть их нет необходимости! Нужно потратить немного времени и понять алгоритм их применения, тогда для вас не составит труда в нужный момент вывести необходимое равенство.

Сначала запишем все формулы приведения:

Для угла (`\frac {\pi}2 \pm \alpha`) или (`90\circ \pm \alpha`):

`sin(\frac {\pi}2 — \alpha)=cos \ \alpha;` ` sin(\frac {\pi}2 + \alpha)=cos \ \alpha“cos(\frac {\pi}2 — \alpha)=sin \ \alpha;` ` cos(\frac {\pi}2 + \alpha)=-sin \ \alpha“tg(\frac {\pi}2 — \alpha)=ctg \ \alpha;` ` tg(\frac {\pi}2 + \alpha)=-ctg \ \alpha`

`ctg(\frac {\pi}2 — \alpha)=tg \ \alpha;` ` ctg(\frac {\pi}2 + \alpha)=-tg \ \alpha`

Для угла (`\pi \pm \alpha`) или (`180\circ \pm \alpha`):

`sin(\pi — \alpha)=sin \ \alpha;` ` sin(\pi + \alpha)=-sin \ \alpha“cos(\pi — \alpha)=-cos \ \alpha;` ` cos(\pi + \alpha)=-cos \ \alpha“tg(\pi — \alpha)=-tg \ \alpha;` ` tg(\pi + \alpha)=tg \ \alpha`

`ctg(\pi — \alpha)=-ctg \ \alpha;` ` ctg(\pi + \alpha)=ctg \ \alpha`

Для угла (`\frac {3\pi}2 \pm \alpha`) или (`270\circ \pm \alpha`):

`sin(\frac {3\pi}2 — \alpha)=-cos \ \alpha;` ` sin(\frac {3\pi}2 + \alpha)=-cos \ \alpha“cos(\frac {3\pi}2 — \alpha)=-sin \ \alpha;` ` cos(\frac {3\pi}2 + \alpha)=sin \ \alpha“tg(\frac {3\pi}2 — \alpha)=ctg \ \alpha;` ` tg(\frac {3\pi}2 + \alpha)=-ctg \ \alpha`

`ctg(\frac {3\pi}2 — \alpha)=tg \ \alpha;` ` ctg(\frac {3\pi}2 + \alpha)=-tg \ \alpha`

Для угла (`2\pi \pm \alpha`) или (`360\circ \pm \alpha`):

`sin(2\pi — \alpha)=-sin \ \alpha;` ` sin(2\pi + \alpha)=sin \ \alpha“cos(2\pi — \alpha)=cos \ \alpha;` ` cos(2\pi + \alpha)=cos \ \alpha“tg(2\pi — \alpha)=-tg \ \alpha;` ` tg(2\pi + \alpha)=tg \ \alpha`

`ctg(2\pi — \alpha)=-ctg \ \alpha;` ` ctg(2\pi + \alpha)=ctg \ \alpha`

Часто можно встретить формулы приведения в виде таблицы, где углы записаны в радианах:

Чтобы воспользоваться ею, нужно выбрать строку с нужной нам функцией, и столбец с нужным аргументом. Например, чтобы узнать с помощью таблицы, чему будет равно ` sin(\pi + \alpha)`, достаточно найти ответ на пересечении строки ` sin \beta` и столбца ` \pi + \alpha`. Получим ` sin(\pi + \alpha)=-sin \ \alpha`.

И вторая, аналогичная таблица, где углы записаны в градусах:

Мнемоническое правило формул приведения или как их запомнить

Как мы уже упоминали, заучивать все вышеприведенные соотношения не нужно. Если вы внимательно на них посмотрели, то наверняка заметили некоторые закономерности. Они позволяют нам сформулировать мнемоническое правило (мнемоника — запоминать), с помощью которого легко можно получить любую с формул приведения.

Сразу отметим, что для применения этого правила нужно хорошо уметь определять (или запомнить) знаки тригонометрических функций в разных четвертях единичной окружности.Само привило содержит 3 этапа:

    1. Аргумент функции должен быть представлен в виде `\frac {\pi}2 \pm \alpha`, `\pi \pm \alpha`, `\frac {3\pi}2 \pm \alpha`, `2\pi \pm \alpha`, причем `\alpha` — обязательно острый угол (от 0 до 90 градусов).
    2. Для аргументов `\frac {\pi}2 \pm \alpha`, `\frac {3\pi}2 \pm \alpha` тригонометрическая функция преобразуемого выражения меняется на кофункцию, то есть противоположную (синус на косинус, тангенс на котангенс и наоборот). Для аргументов `\pi \pm \alpha`, `2\pi \pm \alpha` функция не меняется.
    3. Определяется знак исходной функции. Полученная функция в правой части будет иметь такой же знак.

Чтобы посмотреть, как на практике можно применить это правило, преобразим несколько выражений:

1. ` cos(\pi + \alpha)`.

Функция на противоположную не меняется. Угол ` \pi + \alpha` находится в III четверти, косинус в этой четверти имеет знак «-» , поэтому преобразованная функция будет также со знаком «-» .

Ответ: ` cos(\pi + \alpha)= — cos \alpha`

2.  `sin(\frac {3\pi}2 — \alpha)`.

Согласно мнемоническому правилу функция изменится на противоположную. Угол `\frac {3\pi}2 — \alpha` находится в III четверти, синус здесь имеет знак «-» , поэтому результат также будет со знаком «-» .

Ответ: `sin(\frac {3\pi}2 — \alpha)= — cos \alpha`

3. `cos(\frac {7\pi}2 — \alpha)`.

`cos(\frac {7\pi}2 — \alpha)=cos(\frac {6\pi}2+\frac {\pi}2-\alpha)=cos (3\pi+(\frac{\pi}2-\alpha))`. Представим `3\pi` как `2\pi+\pi`. `2\pi` — период функции.

Важно: Функции `cos \alpha` и `sin \alpha` имеют период `2\pi` или `360\circ`, их значения не изменятся, если на эти величины увеличить или уменьшить аргумент.

Исходя из этого, наше выражение можно записать следующим образом: `cos (\pi+(\frac{\pi}2-\alpha)`. Применив два раза мнемоническое правило, получим: `cos (\pi+(\frac{\pi}2-\alpha)= — cos (\frac{\pi}2-\alpha)= — sin \alpha`.

Ответ: `cos(\frac {7\pi}2 — \alpha)=- sin \alpha`.

Лошадиное правило

Второй пункт вышеописанного мнемонического правила еще называют лошадиным правилом формул приведения. Интересно, почему лошадиным?

Итак, мы имеем функции с аргументами `\frac {\pi}2 \pm \alpha`, `\pi \pm \alpha`, `\frac {3\pi}2 \pm \alpha`, `2\pi \pm \alpha`, точки `\frac {\pi}2`, `\pi`, `\frac {3\pi}2`, `2\pi` — ключевые, они располагаются на осях координат. `\pi` и `2\pi` на горизонтальной оси абсцисс, а `\frac {\pi}2` и `\frac {3\pi}2` на вертикальной оси ординат.

Задаем себе вопрос: «Меняется ли функция на кофункцию?». Чтобы ответить на этот вопрос, нужно подвигать головой вдоль оси, на которой расположена ключевая точка.

То есть для аргументов с ключевыми точками, расположенными на горизонтальной оси, мы отвечаем «нет», мотая головой в стороны. А для углов с ключевыми точками, расположенными на вертикальной оси, мы отвечаем «да», кивая головой сверху вниз, как лошадь

Источник: https://matemonline.com/dh/%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/formuly-privedenija/

Формулы приведения. Как запомнить?

Когда нужно менять синус на косинус. Формулы приведения

Формулы приведения! Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду. О важности их знания  написать можно много. Этих формул аж 32 штуки!

Не пугайтесь, учить их не надо, как и многие другие формулы  в курсе математики. Лишней информацией голову забивать не нужно, необходимо  запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!»  – это значит, что  действительно,  это необходимо  именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например: 

– задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.

– задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.

–  задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.

– стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от  0 до 450 градусов:

Формулы приведения:

угол альфа лежит пределах от 0 до 90 градусов

* * *

Итак, необходимо уяснить «закон», который здесь работает:

1. Определите знак функции в соответствующей четверти.

Напомню их:

2. Запомните следующее: 

функция изменяется на кофункцию

функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Вот и всё!

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

Угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Меняем функцию на кофункцию, так как у нас 270 градусов, значит:

Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов, значит:

Вот вам ещё дополнительное подтверждение того, что синусы смежных углов равны:

Угол лежит во второй  четверти, синус во второй  четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов,  значит:

Проработайте мысленно или письменно каждую формулу, и вы убедитесь, что ничего сложного нет.

***

В статье на решение прямоугольного треугольника был отмечен такой факт  –  синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.

И наоборот – косинус одного острого угла в прямоугольном треугольнике равен синусу другого острого угла в нём. Вот вам и подтверждение этого с помощью формул приведения:

Конечно, определить  значения углов можно и без формул приведения, по тригонометрической окружности. И если вы умеете это делать, то очень хорошо. Но поняв, как работают формулы приведения, вы сможете делать это очень быстро.

 Данные формулы  можно также выразить в табличной форме:

В дальнейшем, применяя свойство периодичности, четности (нечётности) вы без труда определите значение любого угла: 10500, -7500, 23700 и любые другие. Статья об этом в будущем обязательно будет, не пропустите!

Когда в решениях задач буду использовать формулы приведения, то обязательно буду ссылаться на эту статью, чтобы вы всегда смогли освежить в памяти представленную выше теорию. На этом всё. Надеюсь, материал был вам полезен.

Получить материал статьи в формате PDF

С уважением, Александр. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Источник: https://matematikalegko.ru/formuli/formuli-privedenia.html

Формулы приведения: таблица тригонометрических функций по геометрии для 10 класса и основные формулы для синуса или косинуса

Когда нужно менять синус на косинус. Формулы приведения

Формулы приведения! Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду.

О важности их знания  написать можно много. Этих формул аж 32 штуки!

Формулы приведения. Как запомнить?

Не пугайтесь, учить их не надо, как и многие другие формулы  в курсе математики. Лишней информацией голову забивать не нужно, необходимо  запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!»  – это значит, что  действительно,  это необходимо  именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например:

  • задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.
  • задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.
  • задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.
  • стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от  0 до 450 градусов

Формулы приведения:

Угол альфа лежит пределах от 0 до 90 градусов.

Итак, необходимо уяснить «закон», который здесь работает:

  • Определите знак функции в соответствующей четверти.

Напомню их:

Запомните следующее:

  • Функция изменяется на кофункцию
  • Функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

  • Угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Меняем функцию на кофункцию, так как у нас 270 градусов.
  • Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов.
  • Угол лежит во второй  четверти, синус во второй  четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов.

Проработайте мысленно или письменно каждую формулу, и вы убедитесь, что ничего сложного нет.

В статье на решение прямоугольного треугольника был отмечен такой факт  –  синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.

И наоборот – косинус одного острого угла в прямоугольном треугольнике равен синусу другого острого угла в нём. Вот вам и подтверждение этого с помощью формул приведения.

Конечно, определить  значения углов можно и без формул приведения, по тригонометрической окружности. И если вы умеете это делать, то очень хорошо. Но поняв, как работают формулы приведения, вы сможете делать это очень быстро.

В дальнейшем, применяя свойство периодичности, четности (нечётности) вы без труда определите значение любого угла: 10500, -7500, 23700 и любые другие. Статья об этом в будущем обязательно будет, не пропустите!

Когда в решениях задач буду использовать формулы приведения, то обязательно буду ссылаться на эту статью, чтобы вы всегда смогли освежить в памяти представленную выше теорию. На этом всё. Надеюсь, материал был вам полезен.

Источник:

Формулы приведения

Рассмотрим рисунок 1.

На этом рисунке

Следовательно, справедливы формулы:

(1)

Откуда вытекают формулы:

(2)

Формулы (1), (2) называют формулами приведения.

Таблица формул приведения

В целом формулы приведения удобно представить в виде следующей таблицы.

АргументФормула приведения
синускосинустангенскотангенс
– α– sin αcos α
cos αsin α
cos α– sin α
π – αsin α– cos α
π + α– sin α– cos α
– cos α– sin α
– cos αsin α
2π – α– sin αcos α
2π + αsin αcos α
sin (– α) = – sin α;
cos (– α) = cos α;
sin (π – α) = sin α;
cos (π – α) = – cos α;
sin (π + α) = – sin α
cos (π + α) = – cos α
sin (2π – α) = – sin α
cos (2π – α) = cos α
sin (2π + α) = sin α
cos (2π + α) = cos α

Источник:

Формулы приведения в тригонометрии

В тригонометрии, вообще, очень много разных формул. Их количество ни в коем случае не должно пугать школьника. Для того, чтобы успешно сдать ЕГЭ нужно не зубрить наизусть основные тригонометрические тождества, а понять их суть. Для многих формул разработаны даже специальные мнемонические правила, чтобы их можно было проще запомнить.

Один из самых сложных и запутанных, на взгляд ученика средней школы, раздел тригонометрических выражений – это формулы приведения. Для чего же они нужны? Отбросив вступление, скажем сразу — формулы приведения позволяют заменить функцию на кофункцию. Например, если в задании стоит синус α, его можно заменить на косинус α, и наоборот.

Источник: https://rgiufa.ru/matematika-fizika-himiya/kak-zapomnit-formuly-privedeniya.html

Формулы приведения углов

Когда нужно менять синус на косинус. Формулы приведения

Следует сразу оговориться, что данная тема весьма сложна для понимания. Для того, чтобы было легче вникнуть в суть принципа приведения углов, надо каждый случай рассматривать через графическое изображение тригонометрического круга, на котором следует откладывать углы – такая наглядность в значительной мере облегчит усвоение материала.

Формулы приведения позволяют выразить тригонометрические функции углов вида: π/2+α, π+α, 3π/2+α, 2π+α через тригонометрические функции угла α.

Зачем нужны формулы приведения?

Формулы приведения позволяют привести запись тригонометрической функции угла, величина которого лежит в пределах 0-90° (0-π/2) – первый квадрант, в котором и синус, и косинус положительны, что дает возможность с одной стороны значительно упростить последующие вычисления и упрощения, а с другой – быстро найти табличные значения угла.

Например, cos(530°) через формулы приведения можно преобразовать следующим образом:

cos(2π+π/2+80°) = -sin(80°)

На чем основан принцип формул приведения?

Первое, что надо всегда помнить, – в тригонометрии все углы имеют цикличность в 2π (360°) – т. е., значения всех тригонометрических функций углов, кратных 2π будут одинаковы:

  • sin(20°)=sin(380°)=sin(740°) и т.д.
  • cos(20°)=cos(380°)=cos(740°) и т.д.
  • tg(20°)=tg(380°)=tg(740°) и т.д.
  • ctg(20°)=ctg(380°)=ctg(740°) и т.д.

Но, кроме этого, такие тригонометрические функции угла, как синус и косинус, изменяясь в диапазоне от -1 до +1, в зависимости от величины угла, носят цикличный характер, поэтому, величины тригонометрических функций различных углов, лежащих в диапазоне от 0 до 2π могут быть равны.

Например:

Из рисунка очень хорошо видно, что абсциссы углов α (AOM) и -α (ВOM) равны, следовательно cos(α)=cos(-α).

Но, угол -α (ВOM), можно представить, как 2π-α, поэтому, cos(2π-α)=cos(α).

Формулы приведения для синуса

sin(π/2-α) = cos(α)sin(π/2+α) = cos(α)sin(π-α) = sin(α)sin(π+α) = -sin(α)sin(3π/2-α) = -cos(α)sin(3π/2+α) = -cos(α)sin(2π-α) = -sin(α)sin(2π+α) = sin(α)

Формулы приведения для косинуса

cos(π/2-α) = sin(α)cos(π/2+α) = -sin(α)cos(π-α) = -cos(α)cos(π+α) = -cos(α)cos(3π/2-α) = -sin(α)cos(3π/2+α) = sin(α)cos(2π-α) = cos(α)cos(2π+α) = cos(α)

Формулы приведения для тангенса

tg(π/2-α) = ctg(α)tg(π/2+α) = -ctg(α)tg(π-α) = -tg(α)tg(π+α) = tg(α)tg(3π/2-α) = ctg(α)tg(3π/2+α) = -ctg(α)tg(2π-α) = -tg(α)tg(2π+α) = tg(α)

Формулы приведения для котангенса

ctg(π/2-α) = tg(α)ctg(π/2+α) = -tg(α)ctg(π-α) = -ctg(α)ctg(π+α) = ctg(α)ctg(3π/2-α) = tg(α)ctg(3π/2+α) = -tg(α)ctg(2π-α) = -ctg(α)ctg(2π+α) = ctg(α)

Запомнить все формулы приведения достаточно непросто, ибо в них не прослеживается какой-либо явной закономерности.

Однако, это можно сделать, если понять принцип по которому в приведенной формуле происходит или не происходит смена функции на кофункцию и смена или не смена знака функции.

Когда надо менять название функции в формуле приведения?

Смена или не смена функции в формуле приведения зависит от того, к какому диаметру тригонометрического круга прилежит угол α в формуле приведения.

π/2±α и 3π/2±α – это вертикальный диаметр тригонометрического круга (ось Y), поскольку точки π/2 и π3/2 лежат на оси Y. Если помотать головой вверх-вниз, как бы скользя взглядом по оси ординат, то автоматически получим ответ на вопрос “надо ли менять название функции в формуле приведения?” – да, надо.

π±α и 2π±α – это горизонтальный диаметр тригонометрического круга (ось X), поскольку точки π и 2π лежат на оси Х. Если помотать головой влево-вправо, как бы скользя взглядом по оси абсцисс, то автоматически получим ответ на вопрос “надо ли менять название функции в формуле приведения?” – нет, не надо.

Когда надо менять знак функции в формуле приведения?

Для ответа на этот вопрос надо знать знаки функций синуса, косинуса, тангенса и котангенса в каждом квадранте тригонометрического круга.

Для синуса и косинуса – это просто, если помнить, что синус – это ордината (Y), а косинус – абсцисса (X):

  • sin – это ось Y или вертикальная ось, поэтому, все, что лежит выше оси абсцисс – это “плюс” (I, II квадранты), что лежит ниже – “минус” (III, IV квадранты);
  • cos – это ось X или горизонтальная ось, поэтому, все, что лежит правее оси ординат – это “плюс” (I, IV квадранты), что лежит левее – “минус” (II, III квадранты);
  • tg и ctg – это отношение синуса и косинуса, поэтому, тангенс и котангенс будут положительны в тех квадрантах, в которых синус и косинус имеют одинаковый знак – это нечетные квадранты (I, III); соответственно, в четных квадрантах тангенс и котангенс будут отрицательны.

Знак функции в формуле приведения ставится по квадранту исходного угла, при этом считаем, что сам угол α является острым.

Например, для угла π-α получается, что угол находится во II квадранте, т.к., π-α будет лежать в пределах от 90° до 180° (см. рисунок выше).

Во втором квадранте синус положителен, поэтому, в формуле приведения надо будет ставить знак, идентичный знаку исходной функции, т. е., “плюс”.

Поскольку угол π-α прилежит к горизонтальному диаметру, то сама функция не меняется. Получается, что sin(π-α) = sin(α).

Для косинуса надо будет сменить знак, т.к., во втором квадранте косинус отрицателен: cos(π-α) = -cos(α).

Для тангенса и котангенса: в четном квадранте – знак “минус”, а функция остается прежней: tg(π-α) = -tg(α); ctg(π-α) = -сtg(α).

Для угла π+α получается, что угол находится во III квадранте, т.к., π+α будет лежать в пределах от 180° до 270° (см. рисунок). В третьем квадранте синус отрицателен, поэтому, в формуле приведения надо будет сменить знак. Поскольку угол π+α прилежит к горизонтальному диаметру, то функция не меняется. Получается, что sin(π+α) = -sin(α). Аналогично для косинуса: cos(π+α) = -cos(α).

Для тангенса и котангенса: в нечетном квадранте – знак “плюс”, а функция остается прежней: tg(π+α) = tg(α); ctg(π+α) = сtg(α).

Пример решения уравнения с помощью формул приведения:

√2·sin(13π/4)√2·sin(3π+π/4)√2·sin(π+π/4)sin(π+π/4)=-sin(π4)=-√2/2√2·(-√2/2)=-1

Источник: https://prosto-o-slognom.ru/matematika/054-formuly_privedeniya.html

Формулы приведения. Как быстро получить любую формулу приведения

Когда нужно менять синус на косинус. Формулы приведения

Формулы приведения разработаны для углов, представленных в одном из следующих видов: \(\frac{\pi}{2}+a\), \(\frac{\pi}{2}-a\), \(π+a\), \(π-a\), \(\frac{3\pi}{2}+a\), \(\frac{3\pi}{2}-a\), \(2π+a\) и \(2π-a\).

Аналогично их можно использовать для углов представленных в градусах: \(90°+a\), \(90°-a\), \(180°+a\), \(180°-a\), \(270°+a\), \(270°-a\), \(180°+a\), \(180°-a\).

К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Для начала обратите внимание, что все формулы имеют похожий вид:

Здесь нужно пояснить термин «кофункция» – это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Функция:                Кофункция: \(sin⁡\) \(a\)          \(→\)            \(cos⁡\) \(a\) \(cos⁡\) \(a\)          \(→\)             \(sin⁡\) \(a\) \(tg⁡\) \(a\)            \(→\)            \(ctg\) \(a\)

\(ctg⁡\) \(a\)          \(→\)             \(tg\) \(a\)

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс или котангенс, он либо останется синусом, либо превратиться в косинус. А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее. 

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам: – как определить знак перед конечной функцией (плюс или минус)?

– как определить меняется ли функция на кофункцию или нет?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией

Например, выводим формулу приведения для \(⁡cos⁡(\frac{3\pi}{2}-a) =….\) С исходной функцией понятно – косинус, а исходная четверть?

Для того, чтобы ответить на этот вопрос, представим, что \(a\) – угол от \(0\) до \(\frac{\pi}{2}\), т.е. лежит в пределах \(0°…90°\) (хотя это может быть не так, но для определения знака данная условность необходима).

В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол \(\frac{3\pi}{2}-a\)?
Чтобы ответить на вопрос, надо от точки, обозначающей \(\frac{3\pi}{2}\), повернуть в отрицательную сторону на угол \(a\).

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: \(cos(\frac{3\pi}{2}-a)=-…\)

Здесь правило еще проще:

– если «точка привязки» \(\frac{\pi}{2}\) (\(90°\)) или \(\frac{3\pi}{2}\) (\(270°\))– функция меняется на кофункцию;
– если «точка привязки» \(π\) (\(180°\)) или \(2π\) (\(360°\)) – функция остается той же

То есть, при аргументах исходной функции \(\frac{\pi}{2}+a\), \(\frac{\pi}{2}-a\), \(\frac{3\pi}{2}+a\) или \(\frac{\pi}{2}-a\), мы должны поменять функцию, а при аргументах \(π+a\), \(π-a\), \(2π+a\) или \(2π-a\) – нет. Для того, чтоб это легче запомнить, вы можете воспользоваться мнемоническим правилом, которое в школе называют «лошадиным правилом»:

Точки, обозначающие \(\frac{\pi}{2}\) \((90°)\) и \(\frac{3\pi}{2}\) \((270°)\), расположены вертикально, и если вы переводите взгляд с одной на другую и назад, вы киваете головой, как бы говоря «да».

Точки же, обозначающие \(π\) (\(180°\)) и \(2π\) (\(360°\)), расположены горизонтально, и если вы переводите взгляд между ними, вы мотаете головой, как бы говоря «нет».

Эти «да» и «нет» – и есть ответ на вопрос: «меняется ли функция?».
Таким образом, согласно правилу, в нашем примере выше \(cos⁡(\frac{3π}{2}-a)=…\) косинус будет меняться на синус. В конечном итоге получаем, \(cos⁡(\frac{3π}{2}-a)=-sin⁡\) \(a\). Это и есть верная формула приведения.

Зачем нужны формулы привидения? Ну, например, они позволяют упрощать выражения или находить значения некоторых тригонометрических выражений без использования калькулятора.

Пример. (Задание из ЕГЭ) Найдите значение выражения \(\frac{18 \cos {⁡{41}°} }{\sin⁡ {{49}°}}\)

Решение:

\(\frac{18 \cos {{⁡41}°} }{\sin⁡{{49}°}}=\)

Углы \({41}°\) и \({49}°\) нестандартные, поэтому «в лоб» без калькулятора вычислить непросто. Однако использовав формулы привидения, мы легко найдем правильный ответ. Прежде всего, обратите внимание на одну важный момент: \(49°=90°-41°\). Поэтому мы можем заменить на \(49°\) на \(90°-41°\).

\(=\frac{18 \cos {⁡41° }}{\sin⁡ {({90}°-{41}°)}}=\)

Теперь применим к синусу формулу приведения:

  • \(90°-41°\) – это первая четверть, синус в ней положителен. Значит, знак будет плюс;

  • \(90°\)- находится на «вертикали» – функция меняется на кофункцию.

\(\sin⁡{(90°-41°)}=\cos⁡ 41° \)

\(=\frac{18 \cos {⁡41° }}{\cos⁡ {{41}°}}=\)

В числителе и знаменателе получились одинаковые косинусы. Сокращаем их.

\(= 18\)

Записываем ответ

Ответ:  \(18\)

Пример. Найдите значение выражения \(\frac{3 \sin{⁡(\pi-a)}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}\)

Решение:

\(\frac{3 \sin{⁡(\pi-a)}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)

Рассмотрим первое слагаемое числителя: \(\sin⁡(π-a)\). Воспользуемся формулами приведения, выведя ее самостоятельно:
  • \((π-a)\) это вторая четверть, а синус во второй четверти положителен. Значит, знак будет плюс;
  • \(π\) это точка «горизонтальная», то есть мотаем головой, значит функция остается той же.

Таким образом, \(\sin⁡(π-a)=\sin⁡a\) 

\(=\frac{3 \sin{⁡a}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)

Второе слагаемое числителя: \(\cos⁡{(\frac{π}{2} + a)}\):
  • \((\frac{π}{2} + a)\) это опять вторая четверть, а косинус во второй четверти отрицателен. Значит, знак будет минус.
  • \(\frac{π}{2}\) это точка «вертикальная», то есть киваем, значит, функция меняется на кофункцию – синус.

Таким образом, \(\cos{⁡(\frac{π}{2} + a)}=-\sin⁡a\)

\(=\frac{3 \sin{⁡a}-(-\sin{a}) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)

Теперь знаменатель: \(\cos⁡(\frac{3π}{2} – a)\). Его мы разобрали выше, он равен минус синусу. \(\cos⁡(\frac{3π}{2} – a)=-\sin{⁡a}\)

\(=\frac{3 \sin{⁡a}-(-\sin{a}) }{-\sin⁡ {a}}=\)

Раскрываем скобки и приводим подобные слагаемые.

\(=\frac{3 \sin{⁡a}+\sin{a}}{-\sin⁡ {a}}=\frac{4\sin{a}}{-\sin{a}}\)

Сократив на \(\sin⁡{a}\), получаем ответ.

\(=\frac{4 }{-1}=\)\(-4\)

Ответ:  \(-4\)

Пример. Вычислить чему равен \(ctg(-a-\frac{7π}{2})\), если \(tg\) \(⁡a=2\)

Решение:

\(ctg(-a-\frac{7π}{2}) =\)

Здесь сразу формулу приведения применять нельзя, так как аргумент нестандартный. Что не так? Прежде всего, \(a\) стоит первой, хотя должна быть после «точки привязки». Поменяем местами слагаемые аргумента, сохраняя знаки.

\(= ctg(-\frac{7π}{2}-a) =\)

Уже лучше, но все еще есть проблемы – «точка привязки» с минусом, а такого аргумента у нас нет. Избавимся от минуса, вынеся его за скобку внутри аргумента.

\(= ctg(-(\frac{7π}{2}+a)) =\)

Теперь вспомним о том, что котангенс – функция нечетная, то есть \(ctg\) \((-t)=- ctg\) \(t\). Преобразовываем наше выражение.

\(= – ctg(\frac{7π}{2}+a) =\)

Несмотря на то, что точка привязки \(\frac{7π}{2}\) мы все равно можем использовать формулы приведения, потому что \(\frac{7π}{2}\) лежит на пересечении одной из осей и числовой окружности (смотри пояснение ниже). \((\frac{7π}{2}+a)\) это четвертая четверть, и котангенс там отрицателен. «Точка привязки» – вертикальная, то есть функцию меняем. Окончательно имеем \(ctg(\frac{7π}{2}+a)=-tg a\) .

\(= – (- tg\) \(a) = tg\) \(a = 2\)

Готов ответ.

Ответ:  \(2\)

Еще раз проговорим этот важный момент: с точки зрения формулы приведения \(\frac{7π}{2}\) – это тоже самое, что и \(\frac{3π}{2}\). Почему? Потому что \(\frac{7π}{2}=\frac{3π+4π}{2}=\frac{3π}{2}+\frac{4π}{2}=\frac{3π}{2}+2π\). Иными словами, они отличаются ровно на один оборот \(2π\). А на значения тригонометрических функций количество оборотов никак не влияет:

\(cos\) \(⁡t=cos ⁡(t+2π)=cos ⁡(t+4π)=cos ⁡(t+6π)= …=cos⁡ (t-2π)=cos ⁡(t-4π)=cos⁡ (t-6π)…\)
\(sin\) \(t=sin⁡ (t+2π)=sin ⁡(t+4π)=sin ⁡(t+6π)= …=sin⁡ (t-2π)=sin ⁡(t-4π)=sin ⁡(t-6π)…\)

Аналогично с тангенсом и котангенсом (только у них «оборот» равен \(π\)). \(tg\) \(t=tg⁡(t+π)=tg⁡(t+2π)=tg⁡(t+3π)= …=tg⁡(t-π)=tg⁡(t-2π)=tg⁡(t-3π)…\)

\(ctg\) \(t=ctg⁡(t+π)=ctg⁡(t+2π)=ctg⁡(t+3π)= …=ctg⁡(t-π)=ctg⁡(t-2π)=ctg⁡(t-3π)…\)

Таким образом, \(-ctg(\frac{7π}{2}+a)=- ctg(\frac{3π}{2}+2π+a)=- ctg(\frac{3π}{2}+a)\).

То есть, для определения знака и необходимости смены функции важно лишь местоположение «точки привязки», а не её значение, поэтому так расписывать не обязательно (но можно если вы хотите впечатлить своими знаниями учительницу).

Вопрос: Есть ли формулы приведения с аргументами \((\frac{π}{3}-a)\),\((\frac{π}{4}+a)\),\((\frac{7π}{6}+a)\) или тому подобное?
Ответ: К сожалению, нет. В таких ситуациях выгодно использовать формулы разности и суммы аргументов. Например, \(cos⁡(\frac{π}{3}-a)=cos⁡\frac{π}{3} cos⁡a+sin⁡\frac{π}{3} sin⁡a=\frac{1}{2}cos⁡a+\frac{\sqrt{3}}{2} sin⁡a\).

Смотрите также Как доказать тригонометрическое тождество?

Скачать статью {2}+a\), \(\frac{\pi}{2}-a\), \(π+a\), \(π-a\), \(\frac”,”word_count”:1076,”direction”:”ltr”,”total_pages”:1,”rendered_pages”:1}

Источник: http://cos-cos.ru/math/239/

Мед-Центр Здоровье
Добавить комментарий