Какими фигурами являются боковые грани прямой призмы. Призма

Урок 14. призма – Геометрия – 10 класс – Российская электронная школа

Какими фигурами являются боковые грани прямой призмы. Призма

Геометрия, 10 класс

Урок № 14. Призма

Перечень вопросов, рассматриваемых в теме:

  • Понятие призмы и виды призм;
  • Элементы призмы: вершины, ребра, грани;
  • Понятие площади боковой поверхности и площади полной поверхности призмы, формулы для вычисления;
  • Призма как модель реальных объектов;
  • Пространственная теорема Пифагора.

Глоссарий по теме

Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

Боковые грани – все грани, кроме оснований.

Боковые ребра – общие стороны боковых граней.

Основания призмы – равные многоугольники, расположенные в параллельных плоскостях.

Прямая призма – призма, боковые ребра которой перпендикулярны основаниям.

Правильная призма – прямая призма, в основании которой лежит правильный многоугольник.

Площадь полной поверхности призмы – сумма площадей всех ее граней.

Площадь боковой поверхности призмы – сумма площадей ее боковых граней.

Параллелепипед – призма, все грани которой – параллелограммы.

Прямоугольный параллелепипед – параллелепипед в основании которого лежит прямоугольник.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа,

геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. Уровни – М. : Просвещение, 2014. – 255 с.

Открытые электронные ресурсы:

Открытый банк заданий ФИПИ //ege.fipi.ru/

Теоретический материал для самостоятельного изучения

Определение призмы. Элементы призмы.

Рассмотрим два равных многоугольника А1А2…Аn и В1В2…Вn, расположенных в параллельных плоскостях α и β соответственно так, что отрезки А1В1, А2В2…АnВn, соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Рисунок 1 – Призма

Заметим, что каждый из n четырехугольников (A1A2B1B2, …AnA1B1Bn) является параллелограммом. Убедимся в этом на примере четырехугольника A1A2B1B2.

A1A2 и B1B2 параллельны по свойству параллельных плоскостей, пересеченных третьей плоскостью. А1В1 и А2В2 по условию.

Таким образом, в четырехугольнике A1A2B1B2 противоположные стороны попарно параллельны, значит этот четырехугольник — параллелограмм по определению.

Дадим определение призмы. Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

При этом равные многоугольники, расположенные в параллельных плоскостях, называются основаниями призмы, а параллелограммы – боковыми гранями призмы. Общие стороны боковых граней будем называть боковыми ребрами призмы.

На рисунке 1 основаниями призмы являются многоугольникиА1А2…Аn и В1В2…Вn. Боковые грани – параллелограммы A1A2B1B2, …, AnA1B1Bn, а боковые ребра – отрезки А1В1, А2В2, …, АnВn.

Отметим, что все боковые ребра призмы равны и параллельны (как противоположные стороны параллелограммов).

Призму с основаниями А1А2…Аn и В1В2…Вn обозначают А1А2…АnВ1В2…Вn и называют n-угольной призмой.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы. Обратите внимание, что все высоты призмы равны между собой, так как основания расположены на параллельных плоскостях. Также высота призмы может лежать вне призмы (рис. 2).

Рисунок 2 – Наклонная призма

Виды призм

Если боковые ребра призмы перпендикулярны основаниям, то призма называется прямой. В противном случае, призма называется наклонной.

Высота прямой призмы равна ее боковому ребру.

На рисунке 3 приведены примеры прямых призм

Рисунок 3 – Виды призм.

Прямая призма называется правильной, если ее основание – правильный многоугольник. В правильной призме все боковые грани – равные прямоугольники.

Иногда четырехугольную призму, грани которой параллелограммы называют параллелепипедом. Известный вам правильный параллелепипед – это куб.

Площадь полной поверхности призмы. Площадь боковой поверхности призмы.

Площадью полной поверхности призмы (Sполн) называется сумма площадей всех ее граней, а площадью боковой поверхности (Sбок) призмы – сумма площадей ее боковых граней.

Таким образом, верно следующее равенство: Sполн= Sбок+2Sосн, то есть площадь полной поверхности есть сумма площади боковой поверхности и удвоенной площади основания.

Чему равна площадь боковой поверхности прямой призмы?

Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Доказательство

Боковые грани прямой призмы – прямоугольники, основания которых – стороны основания призмы, а высоты равны высоте призмы – h. Площадь боковой поверхности призмы равна сумме площадей боковых граней, то есть прямоугольников.

Площадь каждого прямоугольника есть произведение высоты h и стороны основания. Просуммируем эти площади и вынесем множитель h за скобки. В скобках получим сумму всех сторон основания, то есть периметр основания P.

Таким образом Sбок=Pоснh.

Пространственная теорема Пифагора

Прямой параллелепипед, основание которого – прямоугольник называется прямоугольным.

Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, исходящих из одной вершины.

Рисунок 4 – Прямоугольный параллелепипед

Доказательство

Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1 и найдем квадрат длины его диагонали А1С.

Для этого рассмотрим треугольник А1АС:

Ребро АА1 перпендикулярно плоскости основания (ABC) (т.к. параллелепипед прямой), значит АА1 перпендикулярна любой прямой, лежащей в плоскости основания, в том числе АС. Таким образом, ΔА1АС – прямоугольный.

По теореме Пифагора получаем: А1С2=АА12+АС2 (1).

Выразим теперь АС. По условию в основании лежит прямоугольник, значит ΔАВС – прямоугольный. По тереме Пифагора получаем: АС2=ВС2+АВ2.

Подставив результат в (1), получим: А1С2=АА12+ВС2+АВ2.

Так как в основании прямоугольник, то ВС=АD.

Таким образом, А1С2=АА12+АD2+АВ2.

Что и требовалось доказать

Доказанная теорема является аналогом теоремы Пифагора (для прямоугольного треугольника), поэтому ее иногда называют пространственной теоремой Пифагора.

Примеры и разбор решения заданий тренировочного модуля

Задание 1.

Найдите для каждой картинки пару

1)2) 3)

4)5)

6)

Решение

Все изображения можно разделить на две группы: призмы и многоугольники. Вспомним, что основанием призмы является многоугольник. Теперь необходимо посчитать количество вершин многоугольников в основаниях призм и сопоставить их с нужным изображением. Таким образом, получаем следующий ответ: 1 и 3, 2 и 4, 5 и 6.

Задание 2

Какие из перечисленных объектов могут быть элементами призмы?

1) параллельные плоскости

2) отрезок

3) точка

4) четырехугольник

Решение:

Вспомним сначала, какие элементы есть у призмы. Это ребра, грани, вершины, основания, высота, диагональ.

Ребра, высота и диагональ призмы представляют собой отрезок. Грани и основания – это многоугольники, то есть части плоскостей. Вершины – точки. Таким образом, подходят варианты 2, 3,4.

Ответ: 2,3,4

Источник: //resh.edu.ru/subject/lesson/5443/conspect/

Презентация на тему: Геометрическое тело призма

Какими фигурами являются боковые грани прямой призмы. Призма
Презентация на тему: Геометрическое тело призма

Скачать эту презентацию

Получить код Наши баннеры

Скачать эту презентацию

№ слайда 1 Описание слайда:

Тема урока «Призма» Учитель математики МБОУ «Основная общеобразовательная Обуховская школа» Старооскольского городского округа Белгородской области Чепурных Любовь Ивановна 900igr.net

№ слайда 2 Описание слайда:

Цель урока: Закрепить полученные знания о призме и её элементов. Научиться применять теоретические знания к решению практических задач.

№ слайда 3 Описание слайда:

Эпиграф урока «Три пути ведут к знанию: путь РАЗМЫШЛЕНИЯ – это путь самый благородный, путь ПОДРАЖАНИЯ – это путь самый легкий и путь ОПЫТА – это путь самый горький». Конфуций

№ слайда 4 Описание слайда:

Пиши и говори правильно! (словарь математических терминов) Многогранник, параллелепипед, параллелограмм, призма, диагональ, высота, периметр, площадь, плоскость, поверхность.

№ слайда 5 Описание слайда:

Призма 1.Что такое призма? 2. По рисунку назовите вершины, основания, боковые грани, боковые рёбра призмы. 3.Какие многоугольники лежат в основании призмы и в каких плоскостях они лежат? 4.Какими фигурами являются боковые грани призмы? 5.Какими отрезками являются боковые рёбра призмы?

№ слайда 6 Описание слайда:

Рис.1 Рис.2 Рис.3 Рис.4 Какие из данных многогранников являются призмами?

№ слайда 7 Описание слайда:

Призма 1.Как называется призма изображённая на рисунке? n – угольная 2.Запишите обозначение данной призмы. А1А2 …АnВ1В2…Вn

№ слайда 8 Описание слайда:

Что такое диагональное сечение призмы? – это сечение плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани. A B C A1 D1 C1 B1 D

№ слайда 9 Описание слайда:

Призма По рисунку назовите диагональные сечения призмы АВСDА1В1С1D1 Какими фигурами являются диагональные сечения призмы? Параллелограммами D A B C A1 D1 C1 B1

№ слайда 10 Описание слайда:

Призма Что называется диагональю призмы? -отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. По рис. назовите диагонали призмы

№ слайда 11 Описание слайда:

Призма Назовите для данной призмы: а) вершины; б) основания; в) боковые рёбра; г) боковые грани; д) противоположные грани; е) диагонали граней; ж) диагонали призмы; и) диагональные сечения.

№ слайда 12 Описание слайда:

Призма 1. Какая призма называется прямой? наклонной? Если боковые рёбра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. 2. Что называется высотой призмы? Перпендикуляр , проведённый из какой – нибудь точки одного основания к плоскости другого основания 3. По рисункам назовите высоту для каждой призмы.

№ слайда 13 Описание слайда:

Заполните пустые места

№ слайда 14 Описание слайда:

Заполните пустые места

№ слайда 15 Описание слайда:

Правильная призма 1.Какая призма называется правильной? Прямая призма называется правильной, если её основания – правильные многоугольники 2. Какими фигурами являются боковые грани правильной призмы? Равными прямоугольниками 3. Как называются призмы изображённые на рисунках?

№ слайда 16 Описание слайда:

у = х2 > x2 + у2 = 1 2 ∙ 2 =?

№ слайда 17 Описание слайда:

Закончите предложения: Если основание призмы параллелограмм, то она называется параллелепипедом. 2. У параллелепипеда все грани – параллелограммы. У параллелепипеда противолежащие грани параллельны и равны. 4. Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом.

№ слайда 18 Описание слайда:

5.У прямоугольного параллелепипеда все грани – прямоугольники. 6. Прямоугольный параллелепипед, у которого все рёбра равны называется – кубом. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трёх его измерений.

№ слайда 19 Описание слайда:

Площадью полной поверхности призмы называется сумма площадей всех её граней. Формула площади полной поверхности призмы: Sполн = Sбок + 2Sосн

№ слайда 20 Описание слайда:

Площадью боковой поверхности призмы называется сумма площадей её боковых граней. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы. Формула площади боковой поверхности прямой призмы Sбок = Р h

№ слайда 21 Описание слайда:

Теорема Пифагора АВ2 = АС2 + ВС2 ┐ АВ = АС2 = АВ2 – ВС2

№ слайда 22 Описание слайда:

Задача №1 Чему равна диагональ правильной треугольной призмы, если её боковое ребро равно 8 см, а сторона основания – 6 см? Ответ. 10 см.

№ слайда 23 Описание слайда:

Задача № 2 Боковая поверхность правильной четырёхугольной призмы 32 м2, а полная поверхность 40 м2. Найдите высоту призмы.

№ слайда 24 Описание слайда:

Задача № 2 Дано :АВСDА1В1С1D1 – прав. 4 х угольн. призма. Sбок = 32м2, Sполн = 40м2. Найти: h = ?

№ слайда 25 Описание слайда:

Задача № 2 Решение: Sбок прав. = Р∙h ; Sполн.= Sбок+2Sосн ; 2Sосн = Sполн – Sбок; Sосн =( Sполн- Sбок):2; Sосн =( 40 – 32) =4 м2 Sосн = АD2; => АD =2 м.; Р = 4∙АD = 4∙2 = 8 м.; Ответ. 4м. ;

№ слайда 26 Описание слайда:

Задача № 3 Найдите полную поверхность прямоугольного параллелепипеда по трём его измерениям 10 см; 22 см; и 16 см.

№ слайда 27 Описание слайда:

Задача № 3 Дано : АВСДА1В1С1Д1 – прямоугольный параллелепипед. a = 16 см; b = 10 см; c = 22 см. Найти: Sполн = ?

№ слайда 28 Описание слайда:

Задача №3 Решение: 1 способ Sполн= 2ab + 2ac+2bc; Sполн= 2∙16∙10 + 2 ∙ 16 ∙ 22 + 2 ∙ 10 ∙ 22 = 320 + 704 + 440 = 1464 см2 Ответ: 1464 см2

№ слайда 29 Описание слайда:

Задача №3 Решение: 2 способ Sполн = Sбок + 2 Sосн; h = a; Sбок = Р∙h = (2b +2c)∙a Sбок= (2∙10 + 2∙22)∙16 = =(20 + 44)∙16 =1024 см2 Sосн = b∙c; Sосн = 10 ∙ 22 = 220 см2; Sполн = 1024 + 2 ∙ 220 = 1024 + 440 = 1464 см2 Ответ: 1464 см2

№ слайда 30 Описание слайда:

Задача №4 В прямоугольном параллелепипеде сторона основания 7 дм и 24 дм, а высота параллелепипеда 8 дм. Найдите площадь диагонального сечения. Ответ выразите в метрах.

№ слайда 31 Описание слайда:

Задача №4 Дано: АВСDА1В1С1D1 – прямоуг. параллелепипед. АВ = 7 дм.; АD = 24дм.; h = 8 дм. Найти: Sсеч.= ?

№ слайда 32 Описание слайда:

Задача №4 Решение: Sсеч = S АА1С1С – прямоугольник; Sсеч = АС∙АА1; АВСД – прямоугольник АС2 = АВ2 + ВС2 Sсеч= 25∙8 = 200 дм2 =2 м2 Ответ: 2 м 2

№ слайда 33 Описание слайда:

Домашнее задание на следующем слайде

№ слайда 34 Описание слайда:

Проект « Парник для теплицы» Теплице необходимо построить новые парники с площадью основания 100 м2, высотой 3м.

На покрытие какой формы парника пойдёт меньше плёнки? В форме: 1) прямоугольного параллелепипеда, со сторонами оснований 5м и 20м, высотой 3м; 2)правильной четырёхугольной призмы; 3)пирамиды с прямоугольным основанием, стороны которого 5м и 20м.

4)цилиндра; 5)прямоугольника со сторонами 6м и 16,7 м, накрытого полуцилиндром. 6)конуса; 7)правильной четырёхугольной пирамиды;

Скачать эту презентацию
Скачивание материала начнется через 60 сек. А пока Вы ожидаете, предлагаем ознакомиться с курсами видеолекций для учителей от центра дополнительного образования “Профессионал-Р” (Лицензия на осуществление образовательной деятельности

№3715 от 13.11.2013).

Получить доступ

Источник: //ppt4web.ru/geometrija/geometricheskoe-telo-prizma0.html

Мед-Центр Здоровье
Добавить комментарий