Как выглядят атомные часы. Какие самые точные часы в мире? Точное время и современные технологии

Самые точные часы в мире – квантовые

Как выглядят атомные часы. Какие самые точные часы в мире? Точное время и современные технологии

Время, несмотря на то что ученые до сих пор не могут окончательно разгадать его подлинную сущность, все же имеет свои единицы измерения, установленные человечеством. И прибор для вычисления, именуемый часами. Каковы их разновидности, какие самые точные часы в мире? Об этом пойдет речь в нашем сегодняшнем материале.

Какие самые точные часы в мире?

Ими принято считать атомные – они обладают мизерно маленькими погрешностями, которые могут достигать лишь секунды на миллиард лет. 2-й, не менее почетный, пьедестал выигрывают кварцевые часы.

Они за месяц отстают или спешат вперед только на 10-15 секунд. А вот механические не самые точные часы в мире. Их нужно все время заводить и подводить, и здесь погрешности уже совсем другого порядка.

Самые точные атомные часы в мире

Как уже было сказано, атомные приборы для качественного измерения времени настолько скрупулезны, что данные ими погрешности можно сравнивать с измерениями диаметра нашей планеты в точности до каждой микрочастицы.

Бесспорно, среднестатистическому обывателю в повседневном существовании такие точные механизмы и вовсе не нужны. Такими пользуются исследователи от науки для проведения различных экспериментов, где требуется предельный расчет.

Они предоставляют возможности людям проверить «времени ход» в различных областях земного шара или же провести опыты, подтверждающие собой общую теорию относительности, а также другие физические теории и гипотезы.

Какие самые точные часы в мире? Принято считать ими Парижские, принадлежащие Институту времени. Данный прибор – так называемый эталон времени, по нему сверяются люди во всем мире.

Кстати, на деле он не совсем похож на «ходики» в традиционном понимании этого слова, а напоминает точнейший прибор сложнейшей конструкции, где в основе лежит квантовый принцип, а главная идея – исчисление пространства-времени при помощи колебаний частиц с погрешностями, равными всего 1 секунде на 1000 лет.

Еще точнее

Какие часы самые точные в мире сегодня? В нынешних реалиях ученые изобрели прибор, который в 100 тысяч раз точнее парижского эталона.

Его погрешность – одна секунда на 3,7 миллиарда лет! За произведение данной техники ответственна группа физиков из США.

Она является уже второй версией приборов для времени, построенных на квантовой логике, где обработка информации осуществляется по методу, аналогичному, к примеру, квантовым компьютерам.

Помощь в исследованиях

Новейшие квантовые приборы не только устанавливают другие стандарты в измерении такой величины, как время, но и помогают исследователям многих стран разрешить некоторые вопросы, что связаны с такими физическими постоянными, как скорость светового луча в вакууме или же постоянная Планка.

Возрастающая точность измерений благоприятна для ученых, они надеются выследить замедления времени, оказываемые гравитацией. А одна из технологических компаний в США планирует запустить даже серийные квантовые часы для повседневного пользования.

Правда, насколько высока будет их первичная стоимость?

Атомные часы принято называть также квантовыми, ведь они функционируют на базе процессов, что происходят на молекулярных уровнях. Для создания высокоточных приборов берутся не всякие атомы: обычно характерно использование кальция и йода, цезия и рубидия, а еще молекул водорода.

На данный момент наиболее точные механизмы исчисления времени на основе иттиберия, их произвели американцы. В труде оборудования задействовано свыше 10 тысяч атомов, это и обеспечивает отменную точность.

К слову сказать, предшественники-рекордсмены имели погрешность в секунду «всего» на 100 миллионов, что, согласитесь, также немалый срок.

Точные кварцевые..

При выборе бытовых «ходиков» для использования повседневно, конечно же, атомные приборы не должны приниматься во внимание. Из бытовых сегодня самые точные часы в мире – кварцевые, которые к тому же имеют ряд преимуществ в сравнении с механическими: не требуют завода, работают при помощи кристаллов.

Их погрешности хода в среднем составляют 15 секунд за месяц (механические обычно могут отставать на такое количество времени за сутки). А самые точные наручные часы в мире из всех кварцевых, по мнению многих экспертов, фирмы Citizen – «Хрономастер». Они в год могут иметь погрешность всего 5 секунд. По стоимости они довольно дорогие – в пределах 4 тыс. евро.

На второй ступеньке воображаемого пьедестала Longines (10 секунд за год). Они уже стоят намного дешевле – около 1000 евро.

…и механические

Большинство механических приборов для измерения времени, как правило, не отличаются особой точностью. Однако одно из устройств все же может похвастаться. Часы, изготовленные в 20-м столетии для ратуши Копенгагена, имеют огромный механизм в 14 тысяч элементов. Благодаря сложной конструкции, а также довольно медленному функционалу их погрешности в измерениях – секунда на каждые 600 лет.

Источник: https://FB.ru/article/272229/samyie-tochnyie-chasyi-v-mire---kvantovyie

Который атомный час? Как работает самый точный и малопонятный прибор для измерения времени

Как выглядят атомные часы. Какие самые точные часы в мире? Точное время и современные технологии

Узнаем, как работают атомные часы, чем отличаются от привычных нам приборов для измерения времени и почему они вряд ли станут массовым явлением.

70 лет назад физики впервые изобрели атомные часы — самый точный на сегодняшний день прибор для измерения времени. С тех пор устройство прошло путь от концепта размером с целую комнату до микроскопического чипа, который можно встроить в носимые устройства.

Атомные часы

Начнем с простого: что такое атомные часы?
Это не так уж просто! Для начала разберемся, как работают привычные нам инструменты для измерения времени — кварцевые и электронные хронометры.

Часы, которые могут измерять секунды, состоят из двух компонентов:

  • Физическое действие, которое повторяется определенное количество раз в секунду.
  • Счетчик, который сигнализирует, что секунда прошла, когда происходит определенное количество действий.

В кварцевых и электронных часах физическое действие происходит в кристалле кварца определенного размера, который сжимается и разжимается под воздействием электрического тока с частотой 32 768 Гц. Как только кристалл совершает это количество колебаний, часовой механизм получает электрический импульс и поворачивает стрелку — так работает счетчик.

В атомных часах процесс происходит иначе. Счетчик фиксирует микроволновый сигнал, испускаемый электронами в атомах при изменении уровня энергии. Когда атомы щелочных и щелочноземельных металлов вибрируют определенное количество раз, прибор принимает это значение за секунду.

Показания цезиевых атомных часов лежат в основе современного определения секунды в международной системе единиц измерения СИ. Она определяется как промежуток времени, в течение которого атом цезия-133 (133Cs) совершает 9 192 631 770 переходов.

Атомные часы и правда очень точные?
Да! Например, механические кварцевые часы работают с точностью ±15 секунд в месяц. Когда кварцевый кристалл вибрирует, он теряет энергию, замедляется и теряет время (чаще всего такие часы спешат). Подводить такие часы нужно примерно два раза в год.

Кроме того, со временем кристалл кварца изнашивается и часы начинают спешить. Такие измерительные приборы не отвечают требованиям ученых, которым необходимо делить секунды на тысячи, миллионы или миллиарды частей. Механические компоненты нельзя заставить двигаться с такой скоростью, а если бы это удалось сделать, их компоненты изнашивались бы крайне быстро.

Цезиевые часы отклонятся на одну секунду за 138 млн лет. Однако точность таких измерительных приборов постоянно растет — на данный момент рекорд принадлежит атомным часам с точностью около 10 в степени –17, что означает накопление ошибки в одну секунду за несколько сот миллионов лет.

Раз в атомных часах используются цезий и стронций, они радиоактивны?
Нет, радиоактивность атомных часов — это миф.

Эти измерительные приборы не полагаются на ядерный распад: как и в обычных часах, в них присутствует пружина (только электростатическая) и даже кристалл кварца.

Однако колебания в них происходят не в кристалле, а в ядре атома между окружающими его электронами.

Ничего не понимаем! Как же тогда работают атомные часы?
Расскажем о самых стабильных, цезиевых часах. Измерительный прибор состоит из радиоактивной камеры, кварцевого генератора, детектора, нескольких тоннелей для атомов цезия и магнитных фильтров, которые сортируют атомы низкой и высокой энергии.

Прежде чем попасть в тоннели, хлорид цезия нагревается. Это создает газовый поток ионов цезия, которые затем проходят через фильтр — магнитное поле. Оно разделяет атомы на два подпотока: с высокой и низкой энергией.

Низкоэнергетичный поток атомов цезия проходит через радиационную камеру, где происходит облучение с частотой 9 192 631 770 циклов в секунду. Это значение совпадает с резонансной частотой атомов цезия и заставляет их изменить энергетическое состояние.

Следующий фильтр отделяет низкоэнергетичные атомы от высокоэнергетичных — последние остаются в случае, если произошло смещение частоты излучения.

Чем ближе частота облучения к резонансной частоте атомов, тем больше атомов станут высокоэнергетическими и попадут на детектор, который преобразует их в электричество.

Ток необходим для работы кварцевого генератора — он отвечает за длину волны в радиационной камере, — а значит за то, чтобы цикл повторился вновь.

Предположим, кварцевый генератор теряет свою энергию. Как только это происходит, излучение в камере ослабевает. Следовательно, количество атомов цезия, переходящих в состояние высокой энергии, падает.

Это дает сигнал резервной электрической цепи отключить генератор и скорректировать период колебаний, тем самым фиксируя частоту в очень узком диапазоне.

Затем эта фиксированная частота делится на 9 192 631 770, что приводит к формированию импульса, отсчитывающего секунду.

Если атомные часы тоже зависят от кварцевого кристалла, в чем тогда прорыв?
Действительно, кварцевый генератор — самое слабое место цезиевых атомных часов. С момента создания первого такого измерительного прибора исследователи ищут способ отказаться от компонента — в том числе за счет экспериментов с различными щелочными и щелочноземельными металлами, помимо цезия.

Например, в конце 2017 года ученые из Национального института стандартов и технологий США (NIST) создали в качестве основы для атомных часов трехмерную решетку из 3 тыс. атомов стронция.

https://www.youtube.com/watch?v=YI84RIuk7Q4

Исследователям удалось доказать, что увеличение числа атомов в решетке приводит к увеличению точности часов, а при максимальном количестве атомов точность составила погрешность в одну секунду за 15 млрд лет (примерно столько прошло со времен Большого взрыва).

Но стабильность работы стронциевых часов еще предстоит проверить — сделать это можно только со временем. Пока ученые берут за основу для измерений показания цезиевых атомных часов с кварцевым кристаллом внутри.

Ясно! Значит, скоро атомные часы станут обычным делом?
Маловероятно. Проблема заключается в том, что точность атомных часов регулируется принципом неопределенности Гейзенберга.

Чем выше точность частоты излучения, тем выше фазовый шум, и наоборот. Повышение фазового шума означает, что необходимо усреднить множество циклов для достижения необходимого уровня точности частоты.

Это делает разработку и поддержание работоспособности атомных часов довольно дорогими для массового использования.

Сейчас атомные часы установлены на базовых станциях мобильной связи и в сервисах точного времени. Без них была бы невозможна работа навигационных систем (GPS и ГЛОНАСС), в которых расстояние до точки определяется по времени приема сигнала от спутников.

Кварцевые кристаллы являются доминирующим решением.

Даже в дорогостоящем испытательном оборудовании, таком как осциллограф серии Keysight UXR1104A Infiniium UXR: 110 ГГц, четыре канала (цена не указана, но она находится в диапазоне $1 млн) используют стабилизированные в печи кристаллы кварца для эталонов, стабильных во времени.

Однако в большинстве случаев использование простого кварцевого кристалла будет дешевле и эффективнее, — потому что кварц имеет гораздо лучшее соотношение точности частоты к фазовому шуму.

Поэтому атомные часы необходимы только в случае, когда нужно иметь заданную точность частоты в течение продолжительного времени — десятков и сотен лет.

Такие случаи крайне редки — и вряд ли действительно необходимы обычному человеку, а не ученому. опубликовано econet.ru  

Подписывайтесь на наш канал Яндекс Дзен!

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление – мы вместе изменяем мир! © econet

Источник: https://econet.ru/articles/kotoryy-atomnyy-chas-kak-rabotaet-samyy-tochnyy-i-maloponyatnyy-pribor-dlya-izmereniya-vremeni

Созданы новые атомные часы – самые точные во Вселенной

Как выглядят атомные часы. Какие самые точные часы в мире? Точное время и современные технологии

Созданы первые в мире атомные часы, ход которых определяется массой одного атома. По словам создателей новые часы не только являются самыми точными во всей Вселенной, но также способны заново определить эталонную массу килограмма.

Как известно, сегодня самыми точными из существующих принято считать атомные часы, в которых измеряется быстрота изменения состояния электронов в атомах цезия. Тем не менее, такой способ измерения времени не единственный. В соответствии с одним из постулатов квантовой механики любая материя единовременно существует сразу в двух формах – частицы и волны.

Фактически каждая частица имеет свою частоту, которая принято называть частотой Комптона и которая напрямую зависит от массы атома материи. По мнению специалистов, вполне возможно создать некие “часы Комптона”, точность хода в которых будет определяться частотой того или иного атома. Однако трудность состоит в том, что частота атома в 100 млрд.

раз больше, чем частота видимого светового излучения.

Пытаясь разрешить данную проблему, физики взяли на вооружение Теорию относительности Эйнштейна, а также известный “парадокс близнецов”.

Группа ученых под руководством Хольге Мюллера из Университета штата Калифорния сумела воссоздать этот парадокс на уровне атомов: атомы цезия были направлены через интерферометр – устройство, которое разделяет волны на две части, одна из которых продолжает движение, а вторая остается неподвижной, при этом время для обеих частей начинает течь по-разному.

А вместо прямого измерения частоты Комптона исследователи с помощью лазера измеряли различия в частоте, составляющие примерно 100 000 Герц. Но поскольку данный показатель также зависим от массы атома, то он может считаться индивидуальным одиночным ходом наиболее точных часов в истории Человечества.

Однако, ученые считают, что у в нынешнем своем виде новые атомные часы дают достаточно существенную погрешность: около 1 секунды за 8 лет, что сопоставимо с первыми атомными часами.

Для сравнения: самые современные атомные часы способны “потерять” не более 4 секунд за 13.7 млрд лет – все известное время существования Вселенной.

Но есть нюанс: определив точную массу атома новые часы могут стать бесконечно точными.

Источник: milwatches.com.ua

Похожие новости:

Физики создали самые точные в мире атомные часы

Физики из США и Сингапура создали самые точные на сегодняшний день атомные часы в мире. Результаты своих исследований ученые опубликовали в журнале Nature Communications, а кратко с ними можно ознакомиться на сайте Livescience.Новые часы могут ошибиться на одну секунду за 15 миллиардов ..

Иттербиевые атомные часы поставили рекорд стабильности

В Национальном институте стандартов и технологий (NIST) в США хранятся самые стабильные в мире часы. Они измеряют время благодаря колебаниям атомов иттербия, которые выполняют роль своеобразного маятника или метронома. Точность их настолько высока, что если бы часы завели в момент Большого ..

Китай запустит в космос первые в мире холодные атомные часы

В четверг, 15 сентября, Китай запустит в космос вместе с орбитальной станцией «Тяньгун-2» первые в мире холодные атомные часы, сообщает South China Morning Post.Запуск орбитального модуля «Тяньгун-2», в который поместят холодные атомные часы под названием Cacs, состоится ..

США запустили новые высокоточные атомные часы

Национальный институт стандартов и технологий (NIST) министерства торговли США 3 апреля 2014 года ввел в строй новые атомные часы NIST-F2, которые накапливают ошибку в одну секунду в течение 300 миллионов лет. Согласно сообщению NIST, новые часы заменили ..

Физики создали рекордно точные атомные часы

Сотрудники Национального института стандартов США разработали часы на основе атомов иттербия, которые в 10 раз превосходят все существующие аналоги по точности. Описание часов опубликовано в журнале Science и пресс-релизе Института, кратко о работе можно прочитать на сайте New Scientist. Часы состоят из 10 тысяч отдельных ..

Физики создали самые точные часы на сегодняшний день

Известен тот факт, что возраст Вселенной составляет около 13.8 миллиарда лет плюс-минус несколько сотен миллионов лет. Если измерить такой промежуток времени с помощью самых точных атомных часов, имеющихся в распоряжении людей на сегодняшний день, то погрешность измерений ..

В США создали самые стабильные в мире атомные часы

Физики из Национального института стандартов и технологий (США) побили рекорд стабильности работы атомных часов. Исследование опубликовано в журнале Nature Photonics, кратко о нем сообщает издание EurekAlert!«Мы устранили критический тип шума в процессе работы часов, эффективно делая тактовый ..

Физики добились от атомных часов рекордной синхронизаци

Группа исследователей из Института квантовой оптики Общества Макса Планка и Государственного физико-технического института в Германии смогла добиться рекордно точной синхронизации двух атомных часов. Ученые передали синхронизирующие сигналы по оптоволоконному кабелю и получили точность 10-19 (погрешность ..

  Смарт часы или как их еще называют умные часы представляют собой компьютеризированные наручные часы. Помимо обычно функции показывать время, часы имеют расширенную функциональность. Самые первые выпускаемые модели имели такие простые функции как: калькулятор, переводчик и устройство ..

Физики сделали первый молекулярный фонтан

Физики из Свободного университета Амстердама впервые создали молекулярный фонтан — устройство, охлаждающее и запускающее молекулы вверх, чтобы проследить за их движением в условиях свободного падения. Аналогичные фонтаны для атомов были известны достаточно давно и используются в сверхточных атомных часах. ..

Французы протестировали сверхточные атомные часы

Ученые, работающие в Парижской Обсерватории, провели тестирование новейших атомных часов, которые в состоянии измерять время с максимально возможной точностью. За 300 миллионов лет погрешность этого совершенного механизма составит чуть меньше одной секунды. Если бы 13,8 миллиардов лет назад, ..

Аналитики назвали самые многообещающие высокие технологии

Аналитики компании Gartner опубликовали рейтинг популярности и прогноз развития новых технологий до середины 2016 года. Самыми многообещающими названы искусственный интеллект и взаимодействие между компьютером и человеком, в том числе распознавание и синтез речи, машинное обучение. Результаты исследования ..

Созданы батарейки, которые можно будет использовать 27 лет

О новой впечатляющей разработке сообщили исследователи из немецкого центра ZSW. По их заявлению, удалось создать литий-ионные батареи, которые будут функционировать на протяжении 27 лет. Как сообщают сами специалисты, их батареи отлично подойдут для электромобилей, ведь даже после 10 тысяч циклов ..

Первые роботы для строительства домов уже созданы

В журнале Science накануне опубликованы инструкции по их созданию роботов-термитов для строительства относительно крупных и сложных объектов без чертежей и планов и только на основе сведений о рельефе местности, близлежащих строительных “блоках” или сообщения “коллег” Как говорит один из разработчиков Радхика Нагпал ..

Созданы антибактериальные зубные импланты

Ученые разработали уникальный материал, уничтожающий до 99% бактерий в ротовой полости.Современная медицина позволяет заменить человеку какие-либо фрагменты тела. Всё это делается с помощью 3D-принтера. Специалисты из нидерландского Университета Гронингена напечатали особые зубные имплантаты, обладающие антибактериальными свойствами. Человек, ..

Источник: https://texnomaniya.ru/technology/sozdani-novie-atomnie-chasi-samie-tochnie-vo-vselennojj.html

Атомные часы и правда очень точные?

Да! Например, механические кварцевые часы работают с точностью ±15 секунд в месяц. Когда кварцевый кристалл вибрирует, он теряет энергию, замедляется и теряет время (чаще всего такие часы спешат). Подводить такие часы нужно примерно два раза в год.

Кроме того, со временем кристалл кварца изнашивается и часы начинают спешить. Такие измерительные приборы не отвечают требованиям ученых, которым необходимо делить секунды на тысячи, миллионы или миллиарды частей. Механические компоненты нельзя заставить двигаться с такой скоростью, а если бы это удалось сделать, их компоненты изнашивались бы крайне быстро.

Цезиевые часы отклонятся на одну секунду за 138 млн лет. Однако точность таких измерительных приборов постоянно растет — на данный момент рекорд принадлежит атомным часам с точностью около 10 в степени –17, что означает накопление ошибки в одну секунду за несколько сот миллионов лет.

Раз в атомных часах используются цезий и стронций, они радиоактивны?

Нет, радиоактивность атомных часов — это миф. Эти измерительные приборы не полагаются на ядерный распад: как и в обычных часах, в них присутствует пружина (только электростатическая) и даже кристалл кварца. Однако колебания в них происходят не в кристалле, а в ядре атома между окружающими его электронами.

Ничего не понимаем! Как же тогда работают атомные часы?

Расскажем о самых стабильных, цезиевых часах. Измерительный прибор состоит из радиоактивной камеры, кварцевого генератора, детектора, нескольких тоннелей для атомов цезия и магнитных фильтров, которые сортируют атомы низкой и высокой энергии.

Прежде чем попасть в тоннели, хлорид цезия нагревается. Это создает газовый поток ионов цезия, которые затем проходят через фильтр — магнитное поле. Оно разделяет атомы на два подпотока: с высокой и низкой энергией.

Низкоэнергетичный поток атомов цезия проходит через радиационную камеру, где происходит облучение с частотой 9 192 631 770 циклов в секунду. Это значение совпадает с резонансной частотой атомов цезия и заставляет их изменить энергетическое состояние.

Цезиевые атомные часы.  NPL

Следующий фильтр отделяет низкоэнергетичные атомы от высокоэнергетичных — последние остаются в случае, если произошло смещение частоты излучения.

Чем ближе частота облучения к резонансной частоте атомов, тем больше атомов станут высокоэнергетическими и попадут на детектор, который преобразует их в электричество.

Ток необходим для работы кварцевого генератора — он отвечает за длину волны в радиационной камере, — а значит за то, чтобы цикл повторился вновь.

Предположим, кварцевый генератор теряет свою энергию. Как только это происходит, излучение в камере ослабевает. Следовательно, количество атомов цезия, переходящих в состояние высокой энергии, падает.

Это дает сигнал резервной электрической цепи отключить генератор и скорректировать период колебаний, тем самым фиксируя частоту в очень узком диапазоне.

Затем эта фиксированная частота делится на 9 192 631 770, что приводит к формированию импульса, отсчитывающего секунду.

Если атомные часы тоже зависят от кварцевого кристалла, в чем тогда прорыв?

Действительно, кварцевый генератор — самое слабое место цезиевых атомных часов. С момента создания первого такого измерительного прибора исследователи ищут способ отказаться от компонента — в том числе за счет экспериментов с различными щелочными и щелочноземельными металлами, помимо цезия.

Например, в конце 2017 года ученые из Национального института стандартов и технологий США (NIST) создали в качестве основы для атомных часов трехмерную решетку из 3 тыс. атомов стронция.

https://www.youtube.com/watch?v=YI84RIuk7Q4

Исследователям удалось доказать, что увеличение числа атомов в решетке приводит к увеличению точности часов, а при максимальном количестве атомов точность составила погрешность в одну секунду за 15 млрд лет (примерно столько прошло со времен Большого взрыва).

Но стабильность работы стронциевых часов еще предстоит проверить — сделать это можно только со временем. Пока ученые берут за основу для измерений показания цезиевых атомных часов с кварцевым кристаллом внутри.

Цезиевые атомные часы с цезиевым фонтаном NPL-CsF3. NIST

Ясно! Значит, скоро атомные часы станут обычным делом?

Маловероятно. Проблема заключается в том, что точность атомных часов регулируется принципом неопределенности Гейзенберга. Чем выше точность частоты излучения, тем выше фазовый шум, и наоборот.

Повышение фазового шума означает, что необходимо усреднить множество циклов для достижения необходимого уровня точности частоты.

Это делает разработку и поддержание работоспособности атомных часов довольно дорогими для массового использования.

Сейчас атомные часы установлены на базовых станциях мобильной связи и в сервисах точного времени. Без них была бы невозможна работа навигационных систем (GPS и ГЛОНАСС), в которых расстояние до точки определяется по времени приема сигнала от спутников.

Кварцевые кристаллы являются доминирующим решением.

Даже в дорогостоящем испытательном оборудовании, таком как осциллограф серии Keysight UXR1104A Infiniium UXR: 110 ГГц, четыре канала (цена не указана, но она находится в диапазоне $1 млн) используют стабилизированные в печи кристаллы кварца для эталонов, стабильных во времени.

Однако в большинстве случаев использование простого кварцевого кристалла будет дешевле и эффективнее, — потому что кварц имеет гораздо лучшее соотношение точности частоты к фазовому шуму.

Поэтому атомные часы необходимы только в случае, когда нужно иметь заданную точность частоты в течение продолжительного времени — десятков и сотен лет.

Такие случаи крайне редки — и вряд ли действительно необходимы обычному человеку, а не ученому.

Источник: https://hightech.fm/2019/01/17/atomic-hour

Как работают атомные часы?

Как выглядят атомные часы. Какие самые точные часы в мире? Точное время и современные технологии

Когда внезапно отключается свет и чуть позже появляется, как вы узнаете, какое время на часах нужно выставлять? Да, я про электронные часы, которые наверняка у многих из нас есть. Вы хотя бы раз задумывались о том, как регулируется время? В этой статье мы узнаем все об атомных часах и о том, как они заставляют весь мир тикать.

Радиоактивны ли атомные часы?

Атомные часы показывают время лучше любых других часов. Они показывают время лучше, чем вращение Земли и движение звезд. Без атомных часов GPS-навигация была бы невозможной, Интернет не был бы синхронизирован, а положение планет не было бы известно с достаточной точностью для космических зондов и аппаратов.

Атомные часы не радиоактивны. Они не полагаются на атомный распад. Более того, у них есть пружина, как и у обычных часов. Самое большое отличие стандартных часов от атомных в том, что колебания в атомных часах происходят в ядре атома между окружающими его электронами.

Эти колебания сложно назвать параллелью балансовому колесику в заводных часах, однако оба типа колебания можно использовать для отслеживания уходящего времени.

Частота колебаний внутри атома определяется массой ядра, гравитацией и электростатической «пружиной» между положительным зарядом ядра и облаком электронов вокруг него.

Какие типы атомных часов мы знаем?

Сегодня существуют различные типы атомных часов, однако построены они на одних и тех же принципах. Основное различие связано с элементом и средствами обнаружения изменений уровня энергии. Среди разных типов атомных часов существуют следующие:

  • Цезиевые атомные часы, использующие пучки атомов цезия. Часы разделяют атомы цезия с разными энергетическими уровнями магнитным полем.
  • Водородные атомные часы поддерживают атомы водорода на нужном энергетическом уровне в контейнере, стены которого сделаны из специального материала, поэтому атомы не теряют высокоэнергетическое состояние слишком быстро.
  • Рубидиевые атомные часы, самые простые и компактные из всех, используют стеклянную ячейку с рубидиевыми газом.

Самые точные атомные часы сегодняшнего дня используют атом цезия и обычное магнитное поле с детекторами. Кроме того, атомы цезия сдерживаются лазерными лучами, что уменьшает небольшие изменения частоты из-за эффекта Доплера.

https://www.youtube.com/watch?v=6UyLECXMswU

У атомов есть характерная частота колебаний. Знакомый вам пример частоты — это оранжевое свечение натрия в поваренной соли, если ее бросить в огонь. У атома есть много разных частот, некоторые в радиодиапазоне, некоторые в диапазоне видимого спектра, а некоторые между этими двумя. Цезий-133 чаще всего выбирают для атомных часов.

Чтобы вызвать резонанс атомов цезия в атомных часах, нужно точно измерить один из переходов или резонансную частоту. Обычно это делается путем блокировки кварцевого генератора в основном микроволновом резонансе атома цезия.

Этот сигнал находится в микроволновом диапазоне радиочастотного спектра и обладает той же частотой, что и сигналы спутников прямого вещания.

Инженеры знают, как создать оборудование для этой области спектра, в мельчайших подробностях.

Чтобы создать часы, цезий сначала нагревают так, что атомы выпариваются и проходят через трубу с высоким вакуумом. Сначала они проходят через магнитное поле, которое выбирает атомы с нужным энергетическим состоянием; потом они проходят через интенсивное микроволновое поле.

Частота микроволновой энергии скачет туда-сюда в узком диапазоне частот, так что в определенный момент она достигает частоты 9 192 631 770 герц (Гц, или циклов в секунду). Диапазон микроволнового генератора уже близок к этой частоте, поскольку ее производит точный кварцевый генератор.

Когда атом цезия получает микроволновую энергию нужной частоты, он меняет свое энергетическое состояние.

В конце трубки другое магнитное поле отделяет атомы, которые изменили свое энергетическое состояние, если микроволновое поле было нужной частоты.

Детектор в конце трубки дает выходной сигнал, пропорциональный количеству атомов цезия, которые в него попадают, и достигает пика, когда микроволновая частота достаточно верна.

Этот пиковый сигнал нужен для корректировки, чтобы привести кварцевый генератор, а значит и микроволновое поле к нужной частоте. Эта заблокированная частота затем делится на 9 192 631 770, чтобы дать знакомый всем один импульс в секунду, нужный реальному миру.

Когда изобрели атомные часы?

В 1945 году профессор физики Колумбийского университета Исидор Раби предложил часы, которые можно сделать на основе техники, разработанной в 1930-х годах. Она называлась атомный пучок магнитного резонанса.

К 1949 году Национальное бюро стандартов объявило о создании первых в мире атомных часов на основе молекулы аммиака, колебания которой и считывались, а к 1952 году — создала первые в мире атомные часы на основе атомов цезия, NBS-1.

В 1955 году Национальная физическая лаборатория в Англии построила первые часы на основе пучка цезия в качестве источника калибровки. В течение следующего десятилетия создавались более совершенные часы.

В 1967 году в ходе 13 Генеральной конференции по мерам и весам была определена СИ секунды на основе вибраций в атоме цезия. В мировой системе хронометража не было точнее определения, чем это.

NBS-4, самые стабильные в мире цезиевые часы, были завершены в 1968 году и использовались до 1990 года.

В 1999 году NBS, переименованная в NIST, начала работать с часами NIST-F1, точность которых допускала погрешность на одну секунду в 20 миллионов лет.

Как измеряется атомное время?

Правильная частота для резонанса частицы цезия сегодня определена международным соглашением и составляет 9 192 631 770 герц, поэтому при делении выходного сигнала на это число должен получаться 1 Гц, или 1 цикл в секунду.

Атомные часы улучшили точность измерения времени в миллион раз по сравнению с астрономическими методами. На сегодняшний день самый точный атомный хронометр теряет одну секунду в пять миллиардов лет.

Источник: https://Hi-News.ru/technology/kak-rabotayut-atomnye-chasy.html

Мед-Центр Здоровье
Добавить комментарий