Инерциальная система отсчета пример. Инерциальные системы отсчета

Инерциальные системы отсчета. Первый закон Ньютона. урок. Физика 9 Класс

Инерциальная система отсчета пример. Инерциальные системы отсчета

На предыдущем уроке мы говорили о важности выбора системы отсчета. Напомним, что от того, как мы выберем СО, будут зависеть траектория, пройденный путь, скорость. Есть еще ряд особенностей, связанных с выбором системы отсчета, именно о них и поговорим.

Рис. 1. Зависимость траектории падения груза от выбора системы отсчета

В седьмом классе вы изучали понятия «инерция» и «инертность».

Инерция – это явление, при котором тело стремится сохранить свое первоначальное состояние. Если тело двигалось, то оно должно стремиться к тому, чтобы сохранять скорость этого движения. А если оно покоилось, то будет стремиться сохранить свое состояние покоя.

Инертность – это свойство тела сохранять состояние движения. Свойство инертности характеризуется такой величиной, как масса. Массамера инертности тела. Чем тело тяжелее, тем его труднее сдвинуть с места или, наоборот, остановить.

Обратите внимание на то, что эти понятия имеют непосредственное отношение к понятию «инерциальная система отсчета» (ИСО), о которой будет идти речь ниже.

Рассмотрим движение тела (или состояние покоя) в случае, если на тело не действуют другие тела. Заключение о том, как будет вести себя тело в отсутствии действия других тел, впервые было предложено Рене Декартом (рис. 2) и продолжено в опытах Галилея (рис. 3).

Рис. 2. Рене Декарт

Рис. 3. Галилео Галилей

Если тело движется и на него не действуют другие тела, то движение будет сохраняться, оно будет оставаться прямолинейным и равномерным. Если же на тело не действуют другие тела, а тело покоится, то будет сохраняться состояние покоя.

Но известно, что состояние покоя связано с системой отсчета: в одной СО тело покоится, а в другой вполне успешно и ускоренно движется.

Результаты опытов и рассуждений приводят к выводу о том, что не во всех системах отсчета тело будет двигаться прямолинейно и равномерно или находиться в состоянии покоя при отсутствии действия на него других тел.

Следовательно, для решения главной задачи механики важно выбрать такую систему отчета, где все-таки выполняется закон инерции, где ясна причина, вызвавшая изменение движения тела. Если тело будет двигаться прямолинейно и равномерно в отсутствии действия других тел, такая система отсчета будет для нас предпочтительной, а называться она будет инерциальной системой отсчета (ИСО).

Точка зрения Аристотеля на причину движения

Инерциальная система отсчета – это удобная модель для описания движения тела и причин, которые вызывают такое движение. Впервые это понятие появилось благодаря Исааку Ньютону (рис. 5).

Рис. 5. Исаак Ньютон (1643-1727)

Древние греки представляли себе движение совершенно иначе. Мы познакомимся с аристотелевской точкой зрения на движение (рис. 6).

Рис. 6. Аристотель

Согласно Аристотелю, существует единственная инерциальная система отсчета – система отсчета, связанная с Землей. Все остальные системы отсчета, по Аристотелю, второстепенные. Соответственно, все движения можно разбить на два вида:  1) естественные, то есть те, которые сообщает Земля; 2) вынужденные, то есть все остальные.

Самый простой пример естественного движения – это свободное падение тела на Землю, так как Земля в этом случае сообщает телу скорость.

Рассмотрим пример принудительного движения. Это ситуация, когда лошадь тянет телегу. Пока лошадь прилагает силу, телега движется (рис. 7). Как только лошадь остановилась, остановилась и телега. Нет силы – нет скорости. Согласно Аристотелю, именно сила объясняет у тела наличие скорости.

Рис. 7. Принудительное движение

До сих пор некоторые обыватели считают справедливой точку зрения Аристотеля.

Например, полковник Фридрих Краус фон Циллергут из «Похождения бравого солдата Швейка во время мировой войны» пытался проиллюстрировать принцип «Нет силы – нет скорости»: «Когда весь бензин вышел, – говорил полковник, – автомобиль принужден был остановиться. Это я сам вчера видел. И после этого еще болтают об инерции, господа. Не едет, стоит, с места не трогается. Нет бензина! Ну не смешно ли?»

Как и в современном шоу-бизнесе, там, где есть поклонники, всегда найдутся и критики. Появлялись свои критики и у Аристотеля.

Они предлагали ему проделать следующий эксперимент: отпустите тело, и оно упадет точно под тем местом, где мы его отпустили. Приведем пример критики теории Аристотеля, аналогичный примерам его современников.

Представьте, что летящий самолет выбрасывает бомбу (рис. 8). Упадет ли бомба ровно под тем местом, где мы ее отпустили?

Рис. 8. Иллюстрация к примеру

Конечно же, нет. Но ведь это естественное движение – движение, которое сообщила Земля. Тогда что же заставляет эту бомбу перемещаться еще и вперед? Аристотель отвечал так: дело в том, что естественное движение, которое сообщает Земля – это падание строго вниз. Но при движении в воздухе бомба увлекается его завихрениями, и эти завихрения как бы толкают бомбу вперед.

Что же будет, если воздух убрать и создать вакуум? Ведь если воздуха не будет, то, согласно Аристотелю, бомба должна упасть строго под тем местом, где ее бросили. Аристотель утверждал, что если воздуха не будет, то такая ситуация возможна, но на самом деле в природе не бывает пустоты, вакуума нет. А раз нет вакуума – нет и проблемы.

И только Галилео Галилей сформулировал принцип инерции в том виде, к которому мы привыкли. Причина изменения скорости – это действие на тело других тел. Если на тело не действуют другие тела или это действие скомпенсировано, то скорость тела меняться не будет.

Можно провести следующие рассуждения относительно инерциальной системы отсчета. Представьте ситуацию, когда движется автомобиль, затем водитель выключает двигатель, и дальше автомобиль движется по инерции (рис. 9).

Но это некорректное утверждение по той простой причине, что с течением времени автомобиль остановится в результате действия силы трения.

Поэтому в данном случае не будет равномерного движения – одно из условий отсутствует.

Рис. 9. Скорость автомобиля меняется в результате действия силы трения

Рассмотрим другой случай: с постоянной скоростью движется большой, крупный трактор при этом впереди он тащит большой груз ковшом. Такое движение можно рассматривать как прямолинейное и равномерное, потому что в этом случае все силы, которые действуют на тело, скомпенсированы, уравновешивают друг друга (рис. 10). Значит, систему отсчета, связанную с этим телом, мы можем считать инерциальной.

Рис. 10. Трактор движется равномерно и прямолинейно. Действие всех тел скомпенсировано

Инерциальных систем отсчета может быть очень много. Реально же такая система отсчета все-таки идеализирована, поскольку при ближайшем рассмотрении таких систем отсчета в полном смысле нет. ИСО – это некая идеализация, которая позволяет эффективно моделировать реальные физические процессы.

Для инерциальных систем отсчета справедлива формула сложения скоростей Галилея. Также заметим, что все системы отсчета, о которых мы говорили до этого, можно считать инерциальными в некотором приближении.

Впервые сформулировал закон, посвященный ИСО, Исаак Ньютон. Заслуга Ньютона заключается в том, что он первый научно показал, что скорость движущегося тела меняется не мгновенно, а в результате какого-то действия с течением времени. Вот этот факт и лег в основу создания закона, который мы называем первым законом Ньютона.

Первый закон Ньютона: существуют такие системы отсчета, в которых тело движется прямолинейно и равномерно или находится в состоянии покоя в том случае, если на тело не действуют силы или все силы, действующие на тело, скомпенсированы. Такие системы отсчета называются инерциальными.

По-другому иногда говорят так: инерциальной системой отсчета называется такая система, в которой выполняются законы Ньютона.

Почему Земля – неинерциальная СО. Маятник Фуко

В большом количестве задач необходимо рассматривать движение тела относительно Земли, при этом Землю мы считаем инерциальной системой отсчета. Оказывается, это утверждение не всегда справедливо.

Если рассматривать движение Земли относительно своей оси или относительно звезд, то это движение совершается с некоторым ускорением.

СО, которая движется с неким ускорением не может считаться инерциальной в полном смысле.

Земля вращается вокруг своей оси, а значит все точки, лежащие на ее поверхности, непрерывно меняют направление своей скорости. Скорость – векторная величина. Если ее направление меняется, то появляется некоторое ускорение. Следовательно, Земля не может быть правильной ИСО.

Если подсчитать это ускорение для точек находящихся на экваторе (точки, которые обладают максимальным ускорением относительно точек, находящихся ближе к полюсам), то его значение будет . Индекс  показывает, что ускорение является центростремительным.

В сравнении с ускорением свободного падения , ускорением  можно пренебречь и считать Землю инерциальной системой отсчета.

Однако при длительных наблюдениях забывать о вращении Земли нельзя. Убедительно это показал французский ученый Жан Бернар Леон Фуко (рис. 11).

Рис. 11. Жан Бернар Леон Фуко (1819-1868)

Маятник Фуко (рис. 12)это массивный груз, подвешенный на очень длинной нити.

Рис. 12. Модель маятника Фуко

Если маятник Фуко вывести из состояния равновесия, то он будет описывать следующую траекторию отличную от прямой (рис. 13). Смещение маятника обусловлено вращением Земли.

Рис. 13. Колебания маятника Фуко. Вид сверху.

Вращением Земли обусловлен еще ряд интересных фактов. Например, в реках северного полушария, как правило, правый берег более крутой, а левый берег более пологий. В реках южного полушария – наоборот. Все это обусловлено именно вращением Земли и появляющейся в результате этого силы Кориолиса.

К вопросу о формулировке первого закона Ньютона

Первый закон Ньютона: если на тело не действуют никакие тела либо их действие взаимно уравновешено (скомпенсировано), то это тело будет находиться в состоянии покоя или двигаться равномерно и прямолинейно.

Рассмотрим ситуацию, которая укажет нам на то, что такую формулировку первого закон Ньютона необходимо подкорректировать. Представьте себе поезд с занавешенными окнами. В таком поезде пассажир не может определить, движется поезд или нет, по объектам снаружи.

Рассмотрим две системы отсчета: СО, связанная с пассажиром Володей и СО, связанная с наблюдателем на платформе Катей. Поезд начинает разгоняться, скорость его увеличивается. Что произойдет с яблоком, которое лежит на столе? Оно по инерции покатится в противоположную сторону.

Для Кати будет очевидно, что яблоко движется по инерции, но для Володи это будет непонятно. Он не видит, что поезд начал свое движение, и вдруг яблоко, лежащее на столе, начинается на него катиться. Как такое может быть? Ведь, по первому закону Ньютона, яблоко должно оставаться в состоянии покоя.

Следовательно, нужно усовершенствовать определение первого закона Ньютона.

Рис. 14. Иллюстрация примеру

Корректная формулировка первого закона Ньютона звучит так: существуют такие системы отсчета, в которых тело движется прямолинейно и равномерно или находится в состоянии покоя в том случае, если на тело не действуют силы или все силы, действующие на тело, скомпенсированы.

Володя находится в неинерциальной системе отсчета, а Катя – в инерциальной.

Большая часть систем, реальных систем отсчета – неинерциальные. Рассмотрим простой пример: сидя в поезде, вы положили на стол какое-либо тело (например, яблоко).

Когда поезд трогается с места, мы будем наблюдать такую любопытную картину: яблоко будет двигаться, покатится в противоположную движению поезда сторону (рис. 15). В данном случае мы не сможем определить, какие же тела действуют, заставляют яблоко двигаться.

В этом случае говорят, что система неинерциальная. Но можно выйти из положения, введя силу инерции.

Рис. 15. Пример неинерциальной СО

Еще один пример: когда тело движется по закруглению дороги (рис. 16), то возникает сила, которая заставляет отклоняться тело от прямолинейного направления движения. В этом случае мы тоже должны рассмотреть неинерциальную систему отсчета, но, как и в предыдущем случае, тоже можем выйти из положения, вводя т. н. силы инерции.

Рис. 16. Силы инерции при движении по закругленной траектории

Заключение

Систем отсчета существует бесконечное множество, но среди них большинство – это те, которые мы инерциальными системами отсчета считать не можем. Инерциальная система отсчета – это идеализированная модель. Кстати, такой системой отсчета мы можем принять систему отсчета, связанную с Землей или какими-либо далекими объектами (например, со звездами).

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. – М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А. В. Перышкин, Е. М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300.
  3. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «physics.ru» (Источник)
  2. Интернет-портал «ens.tpu.ru» (Источник)
  3. Интернет-портал «prosto-o-slognom.ru» (Источник)

Домашнее задание

  1. Сформулируйте определения инерциальной и неинерциальной систем отсчета. Приведите примеры таких систем.
  2.  Сформулируйте первый закон Ньютона.
  3. В ИСО тело находится в состоянии покоя. Определите, чему равно значение его скорости в ИСО, которая движется относительно первой системы отсчета со скоростью v?

Источник: https://interneturok.ru/lesson/physics/9-klass/zakony-vzaimodejstviya-i-dvizheniya-tel/inertsialnye-sistemy-otscheta-pervyy-zakon-nyutona

Инерциальные системы отсчета: первый закон Ньютона

Инерциальная система отсчета пример. Инерциальные системы отсчета

С древнейших времен движение материальных тел не переставало волновать умы ученых. Так, например, сам Аристотель считал, что если на тело не действуют никакие силы, то такое тело всегда будет находиться в покое.

И лишь только спустя 2000 лет итальянский ученый Галилео Галилей смог исключить из формулировки Аристотеля слово «всегда». Галилей понял, что пребывание тела в состоянии покоя не является единственным следствием отсутствия внешних сил.

Тогда Галилей заявил: тело, на которое не действуют никакие силы, будет либо находиться в покое, либо двигаться равномерно прямолинейно. То есть, движение с одинаковой скоростью по прямой траектории, с точки зрения физики, равнозначно состоянию покоя.

Что есть состояние покоя?

В жизни этот факт наблюдать очень сложно, поскольку всегда имеет место сила трения, которая не дает предметам и вещам покидать свои места. Но если представить себе бесконечно длинный, абсолютно скользкий и гладкий каток, на котором стоит тело, то станет очевидно, что если придать телу импульс, то тело будет двигаться бесконечно долго и по одной прямой.

И в самом деле, на тело действую только две силы: сила тяжести и сила реакции опоры. Но расположены они на одной прямой и направлены друг против друга. Таким образом, по принципу суперпозиции, мы имеем, что общая сила, действующая на такое тело равна нулю.

Однако это идеальный случай. В жизни сила трения проявляет себя почти во всех случаях. Галилей сделал важное открытие, приравняв состояние покоя и движение с постоянной скоростью по прямой линии. Но этого было недостаточно. Оказалось, что условие это выполняется не во всех случаях.

Ясность в этот вопрос внес Исаак Ньютон, обобщивший исследования Галилея и, таким образом, сформулировавший Первый Закон Ньютона.

Первый закон Ньютона: формулируем сами

Существуют две формулировки первого закона Ньютона современная и формулировка самого Исаака Ньютона.

В исходном варианте первый закон Ньютона несколько неточен, а современный вариант в попытках исправить эту неточность оказался очень запутанным и потому неудачным.

Ну а так как истина всегда где-то рядом, то попытаемся найти это «рядом» и разобраться, что же представляет собой данный закон.

Современная формулировка звучит следующим образом: «Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго».

Инерциальные системы отсчета

Инерциальными называют системы отсчета, в которых выполняется закон инерции. Закон же инерции заключается в том, что тела сохраняют свою скорость неизменной, если на них не действуют другие тела.

Получается очень неудобоваримо, малопонятно и напоминает комичную ситуацию, когда на вопрос: “Где это «тут»?” отвечают: “Это здесь”, а на следующий логичный вопрос: “А где это «здесь»?” отвечают: “Это тут”. Масло масляное.

Замкнутый круг.

Формулировка самого Ньютона такова: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».

Однако на практике этот закон выполняется не всегда. Убедиться в этом можно элементарно. Когда человек стоит, не держась за поручни, в движущемся автобусе, и автобус резко тормозит, то человек начинает двигаться вперед относительно автобуса, хотя его не понуждает к этому ни одна видимая сила.

То есть, относительно автобуса первый закон Ньютона в изначальной формулировке не выполняется. Очевидно, что он нуждается в уточнении. Уточнением и является введение инерциальных систем отсчета. То есть, таких систем отсчета, в которых первый закон Ньютона выполняется. Это не совсем понятно, поэтому попробуем перевести все это на человеческий язык.

Инерциальные и неинерциальные системы отсчета

Свойство инерции любого тела таково, что до тех пор, пока тело остается изолированным от других тел, оно будет сохранять свое состояние покоя или равномерного прямолинейного движения. «Изолированным» – это значит никак не связанным, бесконечно удаленным от других тел.

На практике это означает, что если в нашем примере за систему отсчета принять не автобус, а какую-то звезду на окраине Галактики, то первый закон Ньютона будет абсолютно точно выполняться для беспечного пассажира, не держащегося за поручни. При торможении автобуса он будет продолжать свое равномерное движение, пока на него не подействуют другие тела.

Вот такие системы отсчета, которые никак не связаны с рассматриваемым телом, и которые никак не влияют на инертность тела, называются инерциальными. Для таких систем отсчета первый закон Ньютона в его исходной формулировке абсолютно справедлив.

То есть закон можно сформулировать так: в системах отсчета, абсолютно никак не связанных с телом, скорость тела при отсутствии стороннего воздействия остается неизменной. В таком виде первый закон Ньютона легко доступен для понимания.

Проблема заключается в том, что на практике очень сложно рассматривать движение конкретного тела относительно таких систем отсчета. Мы не можем переместиться на бесконечно далекую звезду и оттуда осуществлять какие-либо опыты на Земле.

Поэтому за такую систему отсчета условно часто принимают Землю, хотя она и связана с находящимися на ней телами и влияет на характеристики их движения. Но для многих расчетов такое приближение оказывается достаточным. Поэтому примерами инерциальных систем отсчета можно считать Землю для расположенных на ней тел, Солнечную систему для ее планет и так далее.

Первый закон Ньютона не описывается какой-либо физической формулой, однако с помощью него выводятся другие понятия и определения. По сути, этот закон постулирует инертность тел. И таким образом выходит, что для инерциальных систем отсчета закон инерции и есть первый закон Ньютона.

Еще примеры инерциальных систем и первого закона Ньютона

Так, например, если тележка с шаром будет ехать сначала по ровной поверхности, с постоянной скоростью, а потом заедет на песчаную поверхность, то шар внутри тележки начнет ускоренное движение, хотя никакие силы на него не действуют (на самом деле, действуют, но их сумма равна нулю).

Происходит это от того, что система отсчета (в данном случае, тележка) в момент попадания на песчаную поверхность, становится неинерциальной, то есть перестает двигаться с постоянной скоростью.      

Первый Закон Ньютона вносит важное разграничение между инерциальными и неинерциальными системами отсчета. Также важным следствием этого закона является тот факт, что ускорение, в некотором смысле, важнее скорости тела.

Поскольку движение с постоянной скоростью по прямой линии суть нахождение в состоянии покоя. Тогда как движение с ускорением явно свидетельствуют о том, что либо сумма сил, приложенных к телу, не равно нулю, либо сама система отсчета, в которой находится тело, является неинерциальной, то есть движется с ускорением.

Причем ускорение может быть как положительным (тело ускоряется), так и отрицательным (тело замедляется).  

Нужна помощь в учебе?

Предыдущая тема: Относительность движения: понятие и примеры
Следующая тема:   Второй закон Ньютона: формула и определение + маленький опыт

НравитсяНравится

Все неприличные комментарии будут удаляться.

Источник: http://www.nado5.ru/e-book/inercialnye-sistemy-otscheta-pervyi-zakon-nyutona

Инерциальная система отсчета – определение, формулы и примеры движения

Инерциальная система отсчета пример. Инерциальные системы отсчета

В системах отсчёта (СО), построенных в соответствии с типом инерции, свободные тела движутся прямым и измеренным образом — с недоступностью внешнего воздействия или вообще не двигаются. В этой СО место считается однородным и изотропным. Термин ИСО был придуман Людвигом Ланге в 1885 году для обозначения системы координат, в которой используются законы Ньютона и формулы расчёта.

Движение тела должно учитываться в сравнительно разных частях, в противном случае невозможно определить состояние его на месте. Наконец, говоря про инерциальное явление, следует показать, относительно чего тело будет в спокойном состоянии или движется размеренно и прямо.

Таким образом, по первому закону Ньютона, именуемому инерционным, формулируют данные описанным образом. Есть такие высокие классы, в отношении которых прогрессивно передвигаемые тела защищают долгосрочную скорость, если влияние иных на него компенсируется. При ИСО тело движется в постоянном значении. Таким образом, движение тела в СО происходит с одинаковой степенью скорости.

Системы отсчёта можно отнести к инерциальным те:

  • в которых при R = 0, V = постоянная;
  • что двигаются относительно СО в прямой линии.

Во всех ИСО с одинаковыми начальными критериями механические явления проходят одинаково, то есть подчиняются одному и тому же закону. Это утверждение называется принципом относительности Галилея.

Инерционный и неинерционный вид

СО, для которых есть закон инерции, называются инерционными. Галилеевские эксперименты фактически рекомендовали считать СО, связанную с территорией, инерциальной. Но ИС бесконечны. Каждая СО, движущаяся с постоянной скоростью относительно другой, считается инерциальной. В них ускорение тела станет похожим.

Если СО перемещается относительно и понемногу, но с переменной скоростью или оборотами, то она не считается инерционной. В такой системе тело обладает способностью самостоятельно ускоряться, в том числе если другие части её не поражены. В неинерциальных системах отсчёта первый закон Ньютона не выполняется.

В настоящем времени известно, что сама справочная система, связанная с территорией, обладает способностью быть приблизительно инерциальной.

Кропотливые исследования говорят, что на самом деле, когда тела перемещаются относительно СО, связанной с территорией, появляются нарушения закона инерции.

С гораздо большей точностью примерами инерциальной системы отсчёта можно считать те, что связаны с Солнцем и другими звёздами.

Как известно, территория движения относительна звёздному небу, а солнце ускоряется и вращается вокруг своей оси. Но если закон инерции нарушается в системах отсчёта, связанных с территорией, в задачах изучения предусмотрены небольшие перемещения, и в результате этого, как правило, СО, связанные с территорией, считаются инерционными.

В настоящее время есть системы позиционирования тела, которые включают устройство для измерения времени и систему координат. В зависимости от того, движется ли тело или неподвижно, можно охарактеризовать состояние объекта в нужное время.

Инерциальная навигационная система (модули) — это безопасный способ получения информации о курсе, координатах, скорости и параметрах выравнивания угла с платформы, на которой она установлена.

После этого стоит отметить такие существенные особенности, как автономность и отсутствие маскирующих видов работ, которые определяют их широкую реализацию.

Основа традиционной (ньютоновской) законодательной механики.

Начальный геоцентрический (первичный) аппарат, по сравнению с которым проводятся измерения, считается инерционным (то есть безусловным, фиксированным относительно звезд). При его поддержке объекты выравниваются по координатам, скорости, ускорению и другим ключевым характеристикам (самолеты, ракеты, галактические, подводные лодки и так далее).

Модули ИНС имеют явные высокие качества по сравнению с другими навигационными системами:

  • универсальность;
  • вероятность определения данных о движении;
  • автономность действий;
  • безусловная помехоустойчивость.

ИСО предоставляет данные навигации для пользовательских систем. Она использует силу и кольцевой лазерный гироскоп вместо обычного определения угловой скорости относительно осей.

Её датчики установлены непосредственно на планере.

Основная функция каждого датчика состоит в жестком определении и расчёте линейных ускорений и угловых скоростей вращения относительно существующих осей движения летательного аппарата.

Эти данные используются для отображения навигации. Каждый датчик может рассматриваться и содержит три лазерных гироскопа и три акселерометра. Они воспринимают угловые скорости и линейные ускорения соответственно. Полученные данные преобразуются в локальные вертикальные координаты и объединяются с входной информацией эфира для расчёта важных параметров, применимость для:

  • положения;
  • ориентации;
  • истинного и магнитного курса;
  • скорости и направления ветра;
  • свободного ускорения;
  • высоты.

Выходы ИС могут бывать на дисплеях системы бортового приборостроения. Они также отображаются на дисплее управления полётом.

Общие положения

Первое требование, которое должно выполняться ИС, чтобы работать нужным образом, является выравниванием границ. Оно в основном состоит из определения локальной вертикали и начального курса. В расчётах выравнивания используется основная предпосылка, что единственные ускорения обусловлены силой тяжести земли. Одно движение во время выравнивания, значит, вращение.

Ускорения, вызванные гравитацией, всегда перпендикулярны поверхности и, таким образом, определяют локальную вертикаль. Она используется для установки данных об ориентации так, чтобы они были точно привязаны к вертикали.

После того как причина установлена, лазерный гироскоп определяет компоненты скорости Земли, чтобы знать курс самолёта. По мере того как выравнивание продолжается, определения вертикальной привязки и рубрики настраиваются для максимальной точности.

Минимальная продолжительность режима выравнивания составляет 10 минут. При навигации ИС предоставляют выходные данные для ориентации, курса, текущего положения, ускорений, угла смещения, скорости относительно Земли и данных о ветре.

Эти гелиоцентрические выходы все выводятся из данных гироскопического датчика и акселерометра.

Начальные сигналы ориентации могут немного существовать, а курс и скорости модифицируются сигналами датчиков, чтобы входить в реальном времени в текущие поступательные параметры посредством реализации и вычислений компьютера.

Источник: https://nauka.club/fizika/inertsialnaya-sistema-otschyeta.html

Какие системы отсчета называются инерциальными? Примеры инерциальной системы отсчета

Инерциальная система отсчета пример. Инерциальные системы отсчета

Древние философы пытались понять суть движения, выявить воздействие звезд и Солнца на человека. Кроме того, люди всегда пытались выявить те силы, которые действуют на материальную точку в процессе ее движения, а также в момент покоя.

Аристотель считал, что при отсутствии движения на тело не оказывают воздействия какие-либо силы. Попробуем выяснить, какие системы отсчета называются инерциальными, приведем их примеры.

Состояние покоя

В повседневной жизни трудно выявить подобное состояние. Практически во всех видах механического движения предполагается присутствие посторонних сил. Причиной является сила трения, не дающая многим предметам покидать свое первоначальное положение, выходить из состояния покоя.

Рассматривая примеры инерциальной системы отсчета, отметим, что все они отвечают 1 закону Ньютона. Только после его открытия удалось объяснить состояние покоя, указывать силы, действующие в этом состоянии на тело.

Формулировка 1 закона Ньютона

В современной интерпретации он объясняет существование систем координат, относительно которых можно рассматривать отсутствие воздействия на материальную точку внешних сил. С точки зрения Ньютона, инерциальными называются системы отсчета, которые позволяют рассматривать сохранение скорости тела на протяжении длительного времени.

Какие системы отсчета являются инерциальными? Примеры их изучаются в школьном курсе физики. Инерциальными считают такие системы отсчета, относительно которых материальная точка передвигается с постоянной скоростью. Ньютон уточнял, что любое тело может находиться в подобном состоянии до тех пор, пока нет необходимости прикладывать к нему силы, способные изменять подобное состояние.

В реальности закон инерции выполняется не во всех случаях. Анализируя примеры инерциальных и неинерциальных систем отсчета, рассмотрим человека, держащегося за поручни в передвигающемся транспорте. При резком торможении машины человек автоматически передвигается относительно транспорта, несмотря на отсутствие внешней силы.

Получается, что не все примеры инерциальной системы отсчета соответствуют формулировке 1 закона Ньютона. Для уточнения закона инерции было введено уточненное определение систем отсчета, в которых он безукоризненно выполняется.

Виды систем отсчета

Какие системы отсчета называются инерциальными? Скоро это станет понятно.

«Приведите примеры инерциальных систем отсчета, в которых выполняется 1 закон Ньютона» – подобное задание предлагают школьникам, выбравшим физику в качестве экзамена в девятом классе.

Для того чтобы справиться с поставленной задачей, необходимо иметь представление об инерциальных и неинерциальных системах отсчета.

Инерция предполагает сохранение покоя или равномерного прямолинейного движения тела до тех пор, пока тело находится в изоляции. «Изолированными» считают тела, которые не связаны, не взаимодействуют, удалены друг от друга.

Рассмотрим некоторые примеры инерциальной системы отсчета. Если считать системой отсчета звезду в Галактике, а не движущийся автобус, выполнение закона инерции для пассажиров, которые держатся за поручни, будет безупречным.

Во время торможения данное транспортное средство будет продолжать равномерное прямолинейное движение до тех пор, пока на него не будут воздействовать иные тела.

Какие примеры инерциальной системы отсчета можно привести? Они не должны иметь связи с анализируемым телом, влиять на его инертность.

Именно для таких систем выполняется 1 закон Ньютона. В реальной жизни трудно рассматривать передвижение тела относительно инерциальных систем отсчета. Невозможно попасть на далекую звезду, чтобы с нее проводить земные эксперименты.

В качестве условных систем отсчета принимают Землю, несмотря на то что она связана с предметами, размещенными на ней.

Рассчитать ускорение в инерциальной системе отсчета можно, если считать в качестве системы отсчета поверхность Земли. В физике нет математической записи 1 закона Ньютона, но именно он является основой для выведения многих физических определений и терминов.

Примеры инерциальных систем отсчета

Школьникам иногда сложно понять физические явления. Девятиклассникам предлагается задание следующего содержания: «Какие системы отсчета называются инерциальными? Приведите примеры подобных систем».

Допустим, что тележка с шаром первоначально движется по ровной поверхности, имея постоянную скорость.

Далее она передвигается по песку, в результате шар приводится в ускоренное движение, несмотря на то что на него не действуют иные силы (их суммарное воздействие равно нулю).

Суть происходящего можно пояснить тем, что во время движения по песчаной поврехности система перестает быть инерциальной, она обладает постоянной скоростью. Примеры инерциальных и неинерциальных систем отсчета свидетельствуют о том, что в определенный промежуток времени происходит их переход.

При разгоне тела его ускорение имеет положительную величину, а при торможении этот показатель становится отрицательным.

Криволинейное движение

Относительно звезд и Солнца движение Земли осуществляется по криволинейной траектории, что имеет форму эллипса. Та система отсчета, в которой центр совмещается с Солнцем, а оси направлены на определенные звезды, будет считаться инерциальной.

Отметим, что всякая система отсчета, которая будет прямолинейно и равномерно передвигаться относительно гелиоцентрической системы, является инерциальной. Криволинейное движение осуществляется с некоторым ускорением.

Учитывая тот факт, что Земля совершает движение вокруг своей оси, система отсчета, которая связана с ее поверхностью, относительно гелиоцентрической движется с некоторым ускорением.

В подобной ситуации можно сделать вывод, что система отсчета, которая связана с поверхностью Земли, передвигается с ускорением относительно гелиоцентрической, поэтому ее нельзя считать инерциальной.

Но значение ускорения подобной системы настолько мало, что во многих случаях существенно влияет на специфику механических явлений, рассматриваемых относительно нее.

Чтобы решать практические задачи технического характера, принято считать инерциальной ту систему отсчета, которая жестко связана с поверхностью Земли.

Относительность Галилея

Все инерциальные системы отсчета имеют важное свойство, которое описывается принципом относительности. Суть его заключается в том, что любое механическое явление при одинаковых начальных условиях осуществляется одинаково независимо от выбираемой системы отсчета.

Равноправие ИСО по принципу относительности выражается в следующих положениях:

  • В таких системах законы механики одинаковы, поэтому любое уравнение, которое описывается ними, выражается через координаты и время, остается неизменным.
  • Результаты проводимых механических опытов позволяют устанавливать, будет ли система отсчета покоиться, или она совершает прямолинейное равномерное движение. Любая система условно может быть признана неподвижной, если другая при этом совершает относительно нее движение с некоторой скоростью.
  • Уравнения механики остаются неизменными по отношению к преобразованиям координат в случае перехода от одной системы ко второй. Можно описать одно и то же явление в различных системах, но их физическая природа при этом меняться не будет.

Решение задач

Первый пример.

Определите, является ли инерциальной системой отсчета: а) искусственный спутник Земли; б) детский аттракцион.

Ответ. В первом случае не идет речи об инерциальной системе отсчета, поскольку спутник передвигается по орбите под воздействием силы земного притяжения, следовательно, движение происходит с некоторым ускорением.

Аттракцион также нельзя считать инерциальной системой, поскольку его вращательное движение происходит с некоторым ускорением.

Второй пример.

Система отчета прочно связана с лифтом. В каких ситуациях ее можно называть инерциальной? Если лифт: а) падает вниз; б) передвигается равномерно вверх; в) ускоренно поднимается; г) равномерно направляется вниз.

Ответ. а) При свободном падении появляется ускорение, поэтому система отсчета, что связана с лифтом, не будет являться инерциальной.

б) При равномерном передвижении лифта система является инерциальной.

в) При движении с некоторым ускорением систему отсчета считают инерциальной.

г) Лифт передвигается замедленно, имеет отрицательное ускорение, поэтому нельзя назвать систему отсчета инерциальной.

Заключение

На протяжении всего времени своего существования человечество пытается понять явления, происходящие в природе. Попытки объяснить относительность движения были предприняты еще Галилео Галилеем. Исааку Ньютону удалось вывести закон инерции, который стали использовать в качестве основного постулата при проведении вычислений в механике.

В настоящее время в систему определения положения тела включают тело, прибор для определения времени, а также систему координат. В зависимости от того, подвижным или неподвижным является тело, можно дать характеристику положения определенного объекта в нужный промежуток времени.

Источник: https://FB.ru/article/343732/kakie-sistemyi-otscheta-nazyivayutsya-inertsialnyimi-primeryi-inertsialnoy-sistemyi-otscheta

Мед-Центр Здоровье
Добавить комментарий