Идеальный газ. Изопроцессы. Опытные законы идеального газа
Изопроцессы в газах
Задачей молекулярной физики и термодинамики является изучение свойств вещества, из которого состоят все тела, а также описание процессов перехода веществ из одного состояния в другое.
Известно, что все вещества состоят из огромного количества беспорядочно движущихся мельчайших частиц — молекул и атомов, поэтому свойства тел определяются свойствами их молекул и атомов, а также характером движения этих частиц в совокупности.
Молекулярная физика рассматривает свойства тел как суммарный результат движения и взаимодействия огромного количества молекул, из которых состоят эти тела. В задачах этой темы обычно не рассматривается движение и свойства отдельных молекул, а только всех вместе, поэтому молекулярную физику еще называют статистической физикой, т.е.
физикой, изучающей свойства статистически большого числа отдельных объектов (молекул) в совокупности.
В задачах термодинамики рассматриваются процессы перехода энергии от одних тел к другим или от одной части тела к другой. Эти процессы тоже обусловлены свойствами и движением молекул тел, поэтому молекулярная физика и термодинамика по существу составляют одну науку, у них одинаковый объект изучения и пользуются они практически одними и теми же параметрами (давлением, объемом, температурой).
В задачах молекулярной физики, объектом изучения является идеальный газ (абстрактный газ), молекулы которого являются материальными точками и не взаимодействуют друг с другом на расстоянии.
Очевидно, что такого газа в природе не существует.
Тем не менее, понятием “идеальный газ” физики широко пользуются в практических расчетах, поскольку законы идеального газа просты и достаточно точно описывают свойства реальных газов, при условиях, близких к нормальным (напомним, что нормальными условиями считается давление Р = 101325 Па и температура Т =273 К. Чем ниже давление газа и чем выше его температура, тем ближе реальный газ к идеальному.
Идеальный газ
Изменение состояния тела при взаимодействии его с окружающей средой называется термодинамическим процессом.
Процесс — это переход газа из одного состояния в другое.
Модель газа, в котором его внутренняя энергия определяется только кинетической энергией его молекул, а объем самих молекул считается равным нулю, называется моделью идеального газа.
Состояние идеального газа определяется тремя параметрами:
P – давление температурой
V – объем
T K –абсолютная температура и t, 0C – относительная температура.
В газе изменяются только два параметра, один остается постоянным.
Процессы, где изменяются два параметра, а один остается постоянным называются изопроцессами.
Изос (греч.) — равный, постоянный.
В ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКЕ РАССМАТРИВАЮТСЯ СЛЕДУЮЩИЕ ОСНОВНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ.
К изопроцессам относятся:
Изобарный процесс, происходящий при постоянном давлении.
Уравнение изобарного процесса: Р = const
Изохорный процесс, происходящий при постоянном объёме.
Уравнение изохорного процесса: V = const
Изотермический процесс, происходящий при постоянной температуре.
Уравнение изотермического процесса: РV = const при T K= const
Главными уравнениями молекулярной физики можно с полным правом назвать два уравнения, из которых можно получить все остальные законы и формулы:
Уравнение Менделеева-К:лапейрона – уравнение состояния идеального газа или его называют: Основное уравнение состояния газа
PV = RT (для 1 кг газа)
и
РV = mRT (для m кг газа)
Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона) устанавливает связь между параметрами газа — давлением, объемом и температурой, когда газ находится в некотором равновесном состоянии, т. е. когда эти параметры не изменяются. Рассмотрим это уравнение:
PV = m RT
Здесь Р — давление газа, V — объем этого газа, m — масса газа, µ — молекулярная масса (одного моля), µR — универсальная газовая постоянная, Т — абсолютная температура газа.
R — газовая постоянная — для каждого газа имеет свое значение и определяется:
R = µR / µ
Универсальная газовая постоянная µR =8,31 КДж / (кмоль×К) называется так потому, что для каждого газа газовая постоянная имеет своё значение, а если эту величину умножить на молярную массу этого газа — µ, взятую из таблицы, то и получится всегда одинаковое значение.
Уравнением состояния идеального газа (уравнением Менделеева-Клапейрона) удобно пользоваться в тех задачах, где речь идет о массе или плотности при неизменных параметрах газа – его давлении, объеме и температуре.
Кроме того, без этого уравнения не обойтись, когда параметры газа изменяются, и при этом изменяется также и его масса.
В этом случае надо записать два уравнения Менделеева-Клапейрона: для начального состояния газа (давление и объём в первой точке)
P1V1= m RT1
и его конечного состояния (давление и объём во второй точке, конечной)
P2V2 = m RT2,
а затем проделать необходимые преобразования в поисках искомой величины.
Если при этом какие-либо параметры состояния газа не изменяются, то индекс у этих параметров можно не изменять или вообще его не писать. Например, если в некотором процессе с идеальным газом изменяется, скажем, давление и масса газа, а объем и температура остаются прежними, то уравнение Менделеева-Клапейрона применительно к первому и второму состояниям можно записать так:
P1V = m1 RT
и
P2V = m2 RT
Нужно помнить, что если газ может свободно расширяться, то не изменяется его давление.
В некоторых задачах говорится о том, что с газом происходят разные процессы, например, сжатие или расширение, или изменение давления, но ни слова не сказано о температуре газа (не говорится о том, что газ нагревается или охлаждается). Значит, следует догадаться самим, что температура газа при этих процессах не изменяется.
Если масса газа в некотором процессе не изменяется, а изменяются только все параметры состояния этого газа, то вместо двух уравнений Менделеева-Клапейрона можно записать одно уравнение, устанавливающее связь между этими параметрами в первом и втором состояниях. Это уравнение непосредственно следует из уравнения Менделеева-Клапейрона, записанного для этих двух состояний данной массы m газа,
P1 V1 = m RT1
и
P2 V2 = m RT2
Следовательно, произведение давления данной массы идеального газа и его объема, деленное на абсолютную температуру этого газа, есть величина постоянная:
P1V1 / T1 = P2V2 / T2 или PV / T = const, при m = const и T = const
Qv = С’v Vн.у. ΔТ
Опытные законы идеального газа
В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой:
1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;
2) между молекулами газа отсутствуют силы взаимодействия;
3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.
Модель идеального газа можно использовать при изучении реальных газов, так как они в условиях, близких к нормальным (например, кислород и гелий), а также при низких давлениях и высоких температурах близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов.
Опытным путем, еще до появления молекулярно-кинетической теории, был установлен целый ряд законов, описывающих поведение идеальных газов, которые мы и рассмотрим.
Закон Бойля — Мариотта: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная:
pV = const (41.1) при Т=const, m=const.
Кривая, изображающая зависимость между величинами р и V, характеризующими свойства вещества при постоянной температуре, называется изотермой. Изотермы представляют собой гиперболы, расположенные на графике тем выше, чем выше температура, при которой происходит процесс (рис. 60).
Закон Гей-Люссака: 1) объем данной массы газа при постоянном давлении изменяется линейно с температурой:
V=V0(1+t) (41.2) при p = const, m = const;
2) давление данной массы газа при постоянном объеме изменяется линейно с температурой:
p = p0(1+t) (41.3) при V=const, m=const.
В этих уравнениях t — температура по шкале Цельсия, р0 и V0 — давление и объем при 0°С, коэффициент =1/273,15 К-1.
Процесс, протекающий при постоянном давлении, называется изобарным. На диаграмме в координатах V, t (рис.61) этот процесс изображается прямой, называемой изобарой. Процесс, протекающий при постоянном объеме, называется изохорным. На диаграмме в координатах р, t (рис. 62) он изображается прямой, называемой изохорой.
Из (41.2) и (41.3) следует, что изобары и изохоры пересекают ось температур в точке t =-1/=-273,15 °С, определяемой из условия 1+t=0. Если сместить начало отсчета в эту точку, то происходит переход к шкале Кельвина (рис. 62), откуда
T=t+1/.
Вводя в формулы (41.2) и (41.3) термодинамическую температуру, законам Гей-Люссака можно придать более удобный вид:
V=V0(1+t)=V0[1+(T-1/)]=V0T,
p=p0(1+t)=p0 [1+(Т-1/)]=р0Т, или
V1/V2 = T1/T2 (41.4)
при p = const, m = const,
р1/р2 = T1/T2 (41.5) при V=const, m=const,
где индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре.
Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен 22,41•10-3м3/моль.
По определению, в одном моле различных веществ содержится одно и то же число молекул, называемое постоянной Авогадро:
NА = 6,022•1023 моль-1.
Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов, т. е.
p=p1+p2+… + pn,
где p1,p2, …, pn—парциальные давления — давления, которые оказывали бы газы смеси, если бы они одни занимали объем, равный объему смеси при той же температуре.
Уравнение Клапейрона – Менделеева
Состояние некоторой массы газа можно определить тремя термодинамическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением
f(p, V, T) = 0,
где каждая из переменных является функцией двух других.
Французский физик и инженер Б. Клапейрон (1799–1864) вывел уравнение состояния идеаль-ного газа, объединив законы Бойля – Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V1, имеет давление p1 и находится при температуре T1.
Эта же масса газа в другом произвольном состоянии характеризуется параметрами p2, V2, T2 (рисунок 4).
Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1–1'); 2) изохорного (изохора 1'–2).
В соответствии с законами Бойля – Мариотта (1) и Гей-Люссака (5) запишем
p1V1= p’1V2,
.
Отсюда получим
Taк как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина рV/Т остается постоянной, т.е.
pV/T = B = const.
Выражение (7) является уравнением Клапейрона, в котором В – газовая постоянная, различ-ная для разных газов.
Русский ученый Д.И. Менделеев (1834–1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (7) к одному молю, использовав молярный объем Vm.
Согласно закону Авогадро при одинаковых p и T моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинаковой для всех газов.
Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению
pVm = RT
удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона – Менделеева.
Числовое значение молярной газовой постоянной определим из формулы (8), полагая, что моль газа находится при нормальных условиях (р0 = 1,013 × 105 Па, T0 = 273,15 К, Vm = 22,41 ´
´ 10–3 м3/моль) : R = 8,31 Дж/(моль × К).
От уравнения (8) для моля газа можно перейти к уравнению Клапейрона – Менделеева для произвольной массы газа.
Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем Vm, то при тех же условиях масса m газа займет объем V = (m/M)Vm, где М – молярная масса (масса одного моля вещества).
Единица молярной массы – килограмм на моль (кг/моль). Уравнение Клапейрона – Менделеевадля массы m газа
где v = m/M – количество вещества; р, V, Т – термодинамические параметры данного состояния; R – универсальная газовая постоянная; М – молярная масса газа.
Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:
k = R/NА = 1,38 × 10–23 Дж/К.
Исходя из этого, уравнение состояния (8) запишем в виде
р = RT/Vm = kNAT/Vm = nkT,
где NA/Vm = n – концентрация молекул (число молекул в единице объема). Таким образом, из уравнения
p = nkT
следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта [И. Лошмидт (1821–1895) – австрийский химик и физик]:
NL = p0/(kT0) = 2,68 × 1025 м–3.
Не нашли то, что искали? Воспользуйтесь поиском:
Источник: https://studopedia.ru/19_350333_idealniy-gaz-izoprotsessi-opitnie-zakoni-idealnogo-gaza.html
Газовые законы. Идеальный и реальный газы – Физика
Иногда для изучения газовых систем достаточно знать только макроскопические параметры, характеризующие состояние всей системы.
Такими параметрами для описания газовой системы, находящейся в тепловом равновесии, являются объем системы, ее масса, давление и температура.
Равновесным состоянием системы называют такое состояние, при котором все ее макроскопические параметры сколь угодно долго остаются неизменными, при этом давление и температура имеют одинаковые значения во всех частях объема.
Исторически впервые установление связей между равновесными макроскопическими параметрами газовых систем произведено опытным путем. Экспериментальные газовые законы формулируются следующим образом:
1. Для данной массы газа при постоянной температуре давление газа изменяется обратно пропорционально объему (закон Бойля-Мариотта):
В соответствии с формулой (5) изотермический процесс представляется на графике гиперболой, которая называется изотермой (рис.3). |
2. Для данной массы газа при постоянном давлении объем газа изменяется линейно с температурой (закон Гей-Люссака):
, | (6) |
где – объем газа при 0oС, V – объем газа при температуре , – коэффициент объемного расширения газа.
3. Для данной массы газа при постоянном объеме давление газа изменяется линейно с температурой (закон Шарля):
, | (7) |
где – давление газа при 0oС, P – давление газа при температуре , – термический коэффициент давления газа.
Оказалось, что для всех газов
.Согласно формулам (6) и (7), изобарический и изохорический процессы представляются на графиках прямыми линиями (изобарами и изохорами), проходящими наклонно к оси температур и пересекающими ее в точке (рис.4, 5).
Точка принята за начало отсчета (нуль) новой шкалы температур, называемой термодинамической шкалой или шкалой Кельвина, или абсолютной шкалой. Температура, отсчитываемая по этой шкале, называется термодинамической; нуль этой шкалы называется нулем Кельвина.
Если цену деления термодинамической шкалы сохранить той же, что и на шкале Цельсия, то температура Т будет связана с температурой t, измеряемой по шкале Цельсия, формулой
, | (8) |
при этом 0 К = -273oС.
Из формулы (4) следует, что при температуре, равной 0 К,
, |
то есть при температуре 0 К вещество исчезает. Этот явно неверный вывод говорит о том, что экспериментальные газовые законы неприменимы в области низких температур. При низких температурах, как будет показано далее, вещество не может существовать в газообразном состоянии: оно переходит в жидкое или даже твердое состояние.
Нуль шкалы Кельвина – самая низкая из возможных температур вещества, при 0 К полностью прекращается хаотическое движение молекул в веществе. Однако это не значит, что в нем прекращается всякое движение.
Сохраняется, например, движение электронов в атоме. В настоящее время удается охлаждать малые объемы вещества до температуры, близкой к 0 К, не достигая последнего лишь на несколько тысячных долей Кельвина.
С помощью термодинамической температуры закон Гей-Люссака можно записать в более простом виде:
,где соответствует 0oС. Следовательно,
. | (9) |
При постоянном давлении объем газа пропорционален термодинамической температуре.
Предложите учащимся самим аналогичным образом преобразовать формулу (7) и получить
. | (10) |
Формулы (9) и (10) представляют собой математическое выражение газовых законов Гей-Люссака и Шарля.
Закон Дальтона. Пусть в некотором объеме находится смесь газов (например, воздух), имеющая давление P. Удалим из объема все газы, кроме одного (например, азота). Тогда он займет весь объем и будет иметь давление P1, называемое парциальным давлением первого газа.
Парциальным давлением газа, входящего в газовую смесь, называется давление, которое имел бы этот газ, если бы он один занимал весь объем, предоставленный смеси. Аналогично введем парциальные давления для других газов, входящих с смесь P2, P3 и т.д.
Для смеси газов справедлив закон Дальтона: давление газовой смеси равно сумме парциальных давлений, входящих в нее газов.
… | (11) |
Закон Авогадро. На основании опытов с различными газами итальянский ученый А.Авогадро установил следующий закон:
При одинаковых температуре и давлении в равных объемах любого газа содержится одинаковое число молекул.
При нормальных условиях, то есть при давлении 1,0133·105 Па и температуре 273,16 К этот объем составляет 0,022414 м3/моль.
Закон Клапейрона. Закон установлен путем объединения законов Бойля-Мариотта, Гей-Люссака и Шарля и описывает процессы, при которых одновременно изменяются все три параметра состояния газа:
. | (12) |
Числовое значение постоянной В зависит от массы газа и его природы.
Уравнение Менделеева-Клапейрона. В 1875 г. Д.И. Менделеев, исходя из законов Клапейрона и Авогадро, получил наиболее общее выражение уравнения состояния газа, связывающее между собой объем V, давление P, температуру Т, массу m и молярную массу М газа:
. | (13) |
Постоянная одинакова для всех газов и называется молярной газовой постоянной. Уравнение Менделеева-Клапейрона является также экспериментальным законом.
При выводе основного уравнения молекулярно-кинетической теории было показано, что макроскопический параметр Р связан со средней кинетической энергией поступательного движения молекул соотношением
. | (14) |
Можно показать, что и другая макроскопическая характеристика состояния газа – термодинамическая температура – также зависит от этой энергии.
Для одного моля газа уравнение (13) перепишем следующим образом:
, .или
. | (15) |
Уравнение Менделеева-Клапейрона для одного моля газа запишется в виде:
. | (16) |
Сопоставив (13) и (15), получаем
. | (17) |
Где = k – постоянная Больцмана, .
Тогда уравнение (17) примет вид:
. | (18) |
Используя формулы (14) и (18), предложите учащимся получить выражение:
Из этой формулы видно, что при одинаковых температуре и давлении все газы содержат в равных объемах одинаковое число молекул.
Предложите учащимся, используя формулу (19) подсчитать число молекул в 1 м3 газа при нормальных условиях. Еще раз напомним, что нормальные условия: Па, Т = 273 К (0oС). Полученное число называется постоянной Лошмидта м-3.
Уравнение Больцмана (18) имеет очень большое значение в молекулярной физике. Из него следует, что температура является мерой средней кинетической энергии поступательного движения молекул.
. | (20) |
Величина
. | (21) |
называется средней квадратичной скоростью хаотического движения молекул.
Уравнение Больцмана получено для модели газа, состоящего из очень маленьких упругих твердых шариков (ближе всего к этой модели одноатомная молекула), находящихся в хаотическом движении и обладающих в трехмерном пространстве тремя степенями свободы. Тогда кинетическая энергия, приходящаяся на одну степень свободы молекулы, равна
. | (22) |
При подсчете кинетической энергии молекулы, имеющей i степеней свободы, используется формула
. | (23) |
Пример 1. Стенки сосуда, в котором находится газ температуры Т, имеют температуру Тст . В каком случае давление газа на стенки сосуда больше: когда стенки сосуда холоднее газа или когда теплее ?
Решение. Если температура стенок сосуда Тст совпадает с температурой газа Т, то молекула, ударяясь о стенку, меняет нормальную компоненту импульса на . Значит суммарное изменение импульса равно .
Когда температура стенок Тст больше температуры газа Т, газ нагревается. Это означает, что молекулы газа отскакивают от стенки с большей скоростью, чем налетают, а, следовательно, и с большим импульсом. В результате изменение импульса будет больше, чем (рис.6).
Если же , то газ охлаждается, то есть молекулы газа отскакивают от стенки с меньшим импульсом, чем налетают на нее. Ясно, что изменение импульса в этом случае будет меньше, чем (рис.7). Так как в соответствии со вторым законом Ньютона изменение импульса пропорционально средней силе, то давление газа на стенки больше, когда стенки теплее газа .
Пример 2. Определить среднеквадратичную скорость молекул и при нормальных условиях.
Решение. В этой задаче, несмотря на то, что молекулы являются двухатомными, мы применяем формулу
,учитывая только 3 поступательные степени свободы. Еще раз напомним, что нормальные условия – Т = 273 К (0oС), Р – 1 атмосфера. Решая в системе СИ, имеем: для водорода , для азота .
Реальные газы. Уравнение Менделеева-Клапейрона описывает поведение идеального газа, молекулы которого можно рассматривать как материальные точки, не взаимодействующие друг с другом.
Молекулы реального газа имеют, как мы знаем, некоторый, хотя и очень малый, размер и связаны между собой силами взаимодействия, правда, тоже малыми.
Однако при низкой температуре или высоком давлении, когда молекулы газа находятся близко друг от друга, пренебрегать их размерами и силами взаимодействия уже недопустимо.
В этих случаях уравнение состояния идеального газа оказывается весьма неточным. Чтобы получить уравнение состояния реального газа, голландский физик Ван-дер-Ваальс ввел в уравнение Менделеева-Клапейрона поправки на размер молекул и на действие сил взаимодействия между ними. В результате уравнение состояния одного моля реального газа приняло вид
. | (24) |
Выражение (24) – уравнение Ван-дер-Ваальса. Здесь а и b – постоянные Ван-дер-Ваальса, для разных газов они имеют свои значения.
Если мы имеем дело не с одним, а с молями газа объемом V, то в уравнении (24) следует сделать замену:
.
Поправка в первой скобке обусловлена силами притяжения между молекулами. Она имеет размерность давления, и ее часто называют внутренним давлением. На стенку сосуда такой газ оказывает давление Р.
Однако, если бы силы притяжения между молекулами мгновенно исчезли, то давление на стенку сосуда стало бы .
То есть при переходе от идеального газа к реальному давление на стенку уменьшается из-за сил притяжения между молекулами.
Поправка b связана с собственным объемом и ее размерность .
При малых давлениях и высоких температурах становится большим, поэтому и , то есть поправки в уравнение Ван-дер-Ваальса становятся пренебрежимо малыми, и оно превращается в уравнение Менделеева-Клапейрона.
Вывод уравнения Ван-дер-Ваальса является упрощенным, но это уравнение дает возможность хотя бы качественно объяснить широкий круг явлений в газах и даже в жидкостях.
На рис.8 показаны три наиболее характерные изотермы (1,2,3), соответствующие уравнению (24) при температурах . При достаточно высокой температуре изотерма близка к изотерме идеального газа. Но при температуре на изотерме появляется точка перегиба К. Точку К называют критической точкой. Соответствующие ей давление, температуру и изотерму называют также критическими.
Еще интересней ведет себя изотерма при температуре T1. Она содержит волнообразный участок САВD, между точками А и В которого наблюдается изотермическое уменьшение объема с уменьшением давления. Очевидно, что такого не может быть. Действительно, экспериментальный ход изотерм в этой области (изображен пунктирной прямой CD) говорит о том, что с изотермическим увеличением объема газа его давление на участке CD не меняется. Опыт показывает, что на горизонтальном участке CD мы наблюдаем так называемый фазовый переход вещества из газообразного состояния в жидкое. Левее двухфазной области расположена область, соответствующая одной фазе – жидкости, правее – вещество находится в газообразном состоянии. |
Таким образом, изотермы, расположенные в области выше критической изотермы, описывают только газообразное состояние вещества. Чем выше температура Т3, тем ближе соответствующая изотерма к изотерме идеального газа.
Из таблицы 1, где приведены критические температура и давление некоторых веществ, видно, что, например, воздух в нормальных атмосферных условиях может существовать только в газообразном состоянии, а вода – как в жидком, так и газообразном состояниях.
Таблица 1
Вещество | Ткр, К | Pкр, 105 Па | Вещество | Ткр, К | Pкр, 105 Па |
Вода | 647 | 218 | Воздух (без СО2) | 132 | 38,5 |
Аммиак | 405 | 112,3 | Азот | 126 | 33,4 |
Углекислота | 304 | 72,7 | Водород | 33 | 13,2 |
Кислород | 154 | 49,7 | Гелий | 5 | 2,3 |
Источник: https://www.sites.google.com/site/sergkraskaa/molekularnaa-fizika/gazovye-zakony-idealnyj-i-realnyj-gazy
Законы идеального газа
Цель работы:проверка законов идеального газа.
Теория
Идеальный газ – это модель разреженного газа, в которой пренебрегается взаимодействием между молекулами. Силы взаимодействия между молекулами довольно сложны. На очень малых расстояниях, когда молекулы вплотную подлетают друг к другу, между ними действуют большие по величине силы отталкивания.
На больших или промежуточных расстояниях между молекулами действуют сравнительно слабые силы притяжения. Если расстояния между молекулами в среднем велики, что наблюдается в достаточно разреженном газе, то взаимодействие проявляется в виде относительно редких соударений молекул друг с другом, когда они подлетают вплотную.
В идеальном газе взаимодействием молекул вообще пренебрегают.
Границы применимости модели идеального газа зависят от рассматриваемой задачи.
Если необходимо установить связь между давлением, объемом и температурой, то газ с хорошей точностью можно считать идеальным до давлений в несколько десятков атмосфер.
Если изучается фазовый переход типа испарения или конденсации или рассматривается процесс установления равновесия в газе, то модель идеального газа нельзя применять даже при давлениях в несколько миллиметров ртутного столба.
Давление газа на стенку сосуда является следствием хаотических ударов молекул о стенку, вследствие их большой частоты действие этих ударов воспринимается нашими органами чувств или приборами как непрерывная сила, действующая на стенку сосуда и создающая давление.
Пусть одна молекула находится в сосуде, имеющем форму прямоугольного параллелепипеда (рис. 1). Рассмотрим, например, удары этой молекулы о правую стенку сосуда, перпендикулярную оси Х.
Считаем удары молекулы о стенки абсолютно упругими, тогда угол отражения молекулы от стенки равен углу падения, а величина скорости в результате удара не изменяется. В нашем случае при ударе проекция скорости молекулы на ось У не изменяется, а проекция скорости на ось Х меняет знак.
Таким образом, проекция импульса изменяется при ударе на величину, равную , знак «-» означает, что проекция конечной скорости отрицательна, а проекция начальной – положительна.
Определим число ударов молекулы о данную стенку за 1 секунду. Величина проекции скорости не изменяется при ударе о любую стенку, т.е. можно сказать, что движение молекулы вдоль оси Х равномерное. За 1 секунду она пролетает расстояние, равное проекции скорости .
От удара до следующего удара об эту же стенку молекула пролетает вдоль оси Х расстояние, равное удвоенной длине сосуда 2L. Поэтому число ударов молекулы о выбранную стенку равно . Согласно 2-му закону Ньютона средняя сила равна изменению импульса тела за единицу времени.
Если при каждом ударе о стенку частица изменяет импульс на величину , а число ударов за единицу времени равно , то средняя сила, действующая со стороны стенки на молекулу (равная по величине силе, действующей на стенку со стороны молекулы), равна , а среднее давление молекулы на стенку равно , где V – объем сосуда.
Если бы все молекулы имели одинаковую скорость, то общее давление получалось бы просто умножением этой величины на число частиц N, т.е. . Но поскольку молекулы газа имеют разные скорости, то в этой формуле будет стоять среднее значение квадрата скорости, тогда формула примет вид: .
Квадрат модуля скорости равен сумме квадратов ее проекций, это имеет место и для их средних значений: . Вследствие хаотичности теплового движения средние значения всех квадратов проекций скорости одинаковы, т.к.
нет преимущественного движения молекул в каком-либо направлении. Поэтому , и тогда формула для давления газа примет вид: .
Если ввести кинетическую энергию молекулы , то получим , где – средняя кинетическая энергия молекулы.
Согласно Больцману средняя кинетическая энергия молекулы пропорциональна абсолютной температуре , и тогда давление идеального газа равно или
. (1)
Если ввести концентрацию частиц , то формула перепишется так:
. (2)
Число частиц можно представить в виде произведения числа молей на число частиц в моле, равное числу Авогадро , а произведение . Тогда (1) запишется в виде:
. (3)
Уравнения (1), (2) и (3) – это разные формы записи уравнения состояния идеального газа, они связывают давление, объем и температуру газа.
Эти уравнения применимы как к чистым газам, так и к смесям газов, в последнем случае под N, n и ν следует понимать полное число молекул всех сортов, суммарную концентрацию или полное число молей в смеси.
Для чистого газа число молей , где М – масса газа, а μ – масса одного моля (молярная масса). Тогда уравнение (3) примет вид:
. (4)
Уравнение состояния в этой форме называют уравнением Клапейрона–Менделеева.
Рассмотрим частные газовые законы. При постоянной температуре и массе из (4) следует, что , т.е. при постоянной температуре и массе газа его давление обратно пропорционально объему. Этот закон называется законом Бойля и Мариотта, а процесс, при котором температура постоянна, называется изотермическим.
Для изобарного процесса, происходящего при постоянном давлении, из (4) следует, что , т.е. объем пропорционален абсолютной температуре. Этот закон называют законом Гей-Люссака.
Для изохорного процесса, происходящего при постоянном объеме, из (4) следует, что , т.е. давление пропорционально абсолютной температуре. Этот закон называют законом Шарля.
Эти три газовых закона, таким образом, являются частными случаями уравнения состояния идеального газа. Исторически они сначала были открыты экспериментально, и лишь значительно позднее получены теоретически, исходя из молекулярных представлений.
Источник: https://ido.tsu.ru/schools/physmat/data/res/virtlab/text/ml1_1.html
Законы идеальных газов
Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.
1. Изохорический процесс. Закон Шарля. V = const.
Изохорическим процессом называется процесс, протекающий при постоянном объёме V. Поведение газа при этом изохорическом процессе подчиняется закону Шарля:
При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.
График изохорического процесса на РV-диаграмме называется изохорой. Полезно знать график изохорического процесса на РТ– и VT-диаграммах (рис. 1.6). Уравнение изохоры:
(1.4.1) |
Рис. 1.
6 Если температура газа выражена в градусах Цельсия, то уравнение изохорического процесса записывается в виде
(1.4.2) |
где Р0 – давление при 0 °С, α – температурный коэффициент давления газа равный 1/273 град-1. График такой зависимости на Рt-диаграмме имеет вид, показанный на рисунке 1.7.
Рис. 1.7 2.
Изобарический процесс. Закон Гей-Люссака. Р = const.
Изобарическим процессом называется процесс, протекающий при постоянном давлении Р. Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака:
При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.
График изобарического процесса на VT-диаграмме называется изобарой. Полезно знать графики изобарического процесса на РV– и РT-диаграммах (рис. 1.8).
Рис. 1.8 Уравнение изобары:
. | (1.4. 3) |
Если температура газа выражена в градусах Цельсия, то уравнение изобарического процесса записывается в виде
(1.4.4) |
где α =1/273 град -1- температурный коэффициент объёмного расширения. График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.
Рис. 1.
9 3. Изотермический процесс. Закон Бойля – Мариотта. T = const.
Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.
Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:
При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.
График изотермического процесса на РV-диаграмме называется изотермой. Полезно знать графики изотермического процесса на VT– и РT-диаграммах (рис. 1.10).
Рис. 1.10 Уравнение изотермы:
(1.4.5) |
4. Адиабатический процесс (изоэнтропийный):
Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.
5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.
6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится NA=6,02·1023молекул (число Авогадро).
7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:
(1.4.6) |
Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.
При , давление смеси газов:
(1.4.7) |
8. Объединённый газовый закон (Закон Клапейрона).
В соответствии с законами Бойля – Мариотта (1.4.5) и Гей-Люссака (1.4.3) можно сделать заключение, что для данной массы газа
(1.4.8) |
Клапейрон Бенуа Поль Эмиль (1799–1864) – французский физик и инженер. Физические исследования посвящены теплоте, пластичности и равновесию твердых тел. Придал математическую форму идеям Н. Карно, первым оценил большое научное значение его труда. Вывел уравнения состояния идеального газа. Впервые ввел в термодинамику графический метод. |
Источник: http://ens.tpu.ru/posobie_fis_kusn/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%B0%D1%8F%20%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0.%20%D0%A2%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0/01-4.htm