Формула силы сопротивления воздуха. Величина силы сопротивления воздуха

Величина силы сопротивления воздуха

Формула силы сопротивления воздуха. Величина силы сопротивления воздуха

Величина силы сопротивления воздуха зависит от формы снаряда, состояния поверхности его корпуса, площади его наибольшего поперечного сечения, плотности воздуха, скорости снаряда относительно воздуха, скорости распространения звука и положения продольной оси снаряда относительно вектора скорости снаряда.

Рассмотрим кратко, как перечисленные выше факторы влияют на величину силы сопротивления воздуха.

Форма и состояние поверхности снаряда. О влиянии формы снаряда и состояния его поверхности на величину силы сопротивления воздуха указывалось при рассмотрении факторов, обусловливающих возникновение силы сопротивления воздуха.

Рис. 12.Влияние формы снаряда на ооразование головной и хвостовой

волн и завихрений позади снаряда:

а — цилиндрический снаряд; б —шаровой снаряд (ядро); в — продолговатый снаряд с цилиндрической запоясковой частью (старая фугасная граната);

г—продолговатый снаряд с конической запоясковой частью

Зависимость величины волнового и вихревого сопротивлений от формы снаряда наглядно видна на рис. 12, на котором приведены моментальные фотографии снарядов, выпущенных с примерно одинаковой начальной скоростью.

Наименьшие волны и завихрения получаются у снаряда, имеющего наиболее заостренную головную часть и скошенную донную часть, наибольшие волны и завихрения — у цилиндрического снаряда.

Но следует иметь в виду, что при выборе оптимальной формы снаряда необходимо наряду с уменьшением сопротивления воздуха обеспечить устойчивость полета снаряда, рациональное использование металла, снаряжения и эффективное действие снаряда у цели; поэтому снаряды различных типов имеют неодинаковую форму.

Зависимость величины силы сопротивления воздуха от формы снаряда выражается коэффициентом формы i.

Для снаряда данного типа, форма которого принята за эталон, коэффициент формы принимают равным единице. При изменении формы снаряда относительно эталонной коэффициент формы определяется опытным путем.

Площадь наибольшего поперечного сечения. Если угол нутации δ = 0, то количество элементарных частиц воздуха, которые снаряд будет встречать на своем пути, при прочих равных условиях будет зависеть от площади его наибольшего поперечного сечения.

Чем больше площадь поперечного сечения снаряда, тем больше элементарных частиц воздуха будет воздействовать на снаряд, тем больше будет и сила сопротивления воздуха.

Экспериментальные данные показывают, что сила сопротивления воздуха изменяется пропорционально изменению площади поперечного сечения снаряда.

Плотность воздуха. Под плотностью воздуха понимают массу воздуха, приходящуюся на единицу его объема. Изменение массы воздуха в единице объема может произойти за счет изменения количества элементарных частиц (молекул), приходящихся на единицу объема, или за счет изменения массы каждой частицы.

Если, например, плотность воздуха увеличилась, то это значит, что или увеличилось количество элементарных частиц в каждой единице объема воздуха, или увеличилась масса частиц (или то и другое вместе), а раз так, то и сила воздействия воздуха на каждую единицу поверхностной площади снаряда возрастет, следовательно, возрастет и полное сопротивление воздуха.

Установлено, что сила сопротивления воздуха изменяется пропорционально изменению плотности воздуха.

Скорость снаряда. Исследования показывают, что сила сопротивления воздуха прямо пропорциональна квадрату скорости снаряда относительно воздуха. Если, например, скорость снаряда относительно воздуха увеличится в два раза, то сила сопротивления воздуха возрастет в четыре раза.

Это объясняется тем, что, во-первых, с увеличением скорости снаряда он будет в каждую единицу времени встречать на своем пути больше элементарных частиц воздуха и, во-вторых, инерция частиц воздуха при большей скорости 'должна быть преодолена снарядом в более короткий момент времени, что вызовет большее противодействие со стороны частиц воздуха.

Скорость распространения звука в воздухе. Образование волнового сопротивления, как показано выше, происходит в момент, когда скорость снаряда становится равной скорости звука, т. е. в момент, когда ,

где v — скорость снаряда и а — скорость звука в воздухе.

Скорость звука в воздухе непостоянна (зависит от температуры и влажности воздуха).

Следовательно, при одной и той же скорости снаряда из-за изменения скорости звука в воздухе величина волнового сопротивления и силы сопротивления воздуха в целом могут быть различными.

Зависимость величины силы сопротивления воздуха от скорости распространения звука учитывается специальным коэффициентом . Величина , зависит от величины и от формы снаряда. График этой зависимости приводится на рис. 13.

Рис. 13. График функции :

а. — снаряд с цилиндрической запоясковой частью (старая фугасная граната);

б — продолговатый снаряд с конической запоясковой частью

Положение продольной оси снаряда относительно касательной к траектории (вектора скорости). Полет снаряда в воздухе сопровождается сложными колебательными движениями вокруг центра тяжести, в результате чего продольная ось снаряда оказывается не совмещенной с направлением полета (с вектором скорости), т. е. появляются углы нутации.

При возникновении угла нутации снаряд летит уже не головной частью вперед, а подставляет встречному потоку воздуха и часть боковой поверхности. Условия обтекания снаряда воздухом из-за этого также резко ухудшаются.

Все это резко увеличивает силу сопротивления воздуха. Для уменьшения влияния этого фактора принимают меры к стабилизации полета снаряда, т. е. к уменьшению углов нутации.

Итак, влияние различных факторов на величину силы сопротивления воздуха сложно и многогранно. Поэтому обычно силу сопротивления воздуха определяют опытным путем для условий, что сила сопротивления воздуха во все время дви жения приложена к его центру тяжести и направлена по касательной к траектории, т. е, углы нутации отсутствуют.

Величину силы сопротивления воздуха выражают различными эмпирическими формулами. Одна из наиболее распро страненных имеет вид

(1.7)

где R — величина силы сопротивления воздуха, кг;

i— коэффициент формы;

S -площадь поперечного сечения снаряда, м2;

ρ — плотность воздуха (масса 1 м3 данного воздуха она равна ,

где П — вес 1 м3 воздуха, или весовая плотность воздуха);

v — скорость снаряда относительно воздуха, м/с;

— эмпирический коэффициент, учитывающий влияние величины

отношения скорости снаряда к скорости звука в зависимости от формы снаряда.

В формуле 1.7 величина имеет самостоятельный смысл, ибо это есть ни что иное, как кинетическая энергия, или живая сила 1 м3 воздуха. Эту величину называют скоростным напором.

Лекція 10

Тема 4. Заняття 2. Рух снаряда в повітрі

1. Прискорення сили опору повітря. Поперечн навантаження і балістичний коефіцієнт.

2. Необхідність прийняття мір для забезпечення стійкості снаряда в польоті.

3. Рух швидко обертаючогося снаряда в польоті. Деривація.

Источник: //studopedia.su/8_52385_velichina-sili-soprotivleniya-vozduha.html

Свободное падение тела с учетом сопротивления среды

Формула силы сопротивления воздуха. Величина силы сопротивления воздуха

При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения.

Каждый понимает, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды. Даже эту.

относительно несложную, задачу нельзя решить средствами «школьной» физики; таких задач, представляющих практический интерес, очень много. Прежде чем приступать к обсуждению соответствующих моделей, вспомним, что известно о силе сопротивления.

Закономерности, обсуждаемые ниже, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. О силе сопротивления среды движущемуся телу известно, что она, вообще говоря, растет с ростом скорости (хотя это утверждение не является абсолютным).

При относительно малых скоростях величина силы сопротивления пропорциональна скорости и имеет место соотношение Fcoпp = k1v, где k1 определяется свойствами среды и формой тела. Например, для шарика k1 = 6??r — это формула Стокса, где ? -динамическая вязкость среды, r — радиус шарика. Так, для воздуха при t = 20°С и давлении 1 атм.

? = 0,0182 Н•с•м-2, для воды 1,002 Н•с•м-2, для глицерина 1480 Н•с•м-2.

Оценим, при какой скорости для падающего вертикально шара сила сопротивления сравняется с силой тяжести (и движение станет равномерным).

Имеем

или

Пусть r = 0,1 м, ? = 0,8•103 кг/м3 (дерево). При падении в воздухе v* ? 960 м/с, в воде v*? 17 м/с, в глицерине v* ? 0,012 м/с.

На самом деле первые два результата совершенно не соответствуют действительности. Дело в том, что уже при гораздо меньших скоростях сила сопротивления становится пропорциональной квадрату скорости: Fcoпp = k2v2.

Разумеется, линейная по скорости часть силы сопротивления формально также сохранится, но если k2v2 k1v, то вкладом k1v можно пренебречь (это конкретный пример ранжирования факторов). О величине k2 известно следующее: она пропорциональна площади сечения тела S, поперечного по отношению к потоку, и плотности среды ?среды и зависит от формы тела.

Обычно представляют k2 = 0,5сS?срeды, где с — коэффициент лобового сопротивления — безразмерен. Некоторые значения с (для не очень больших скоростей) приведены на рис. 7.6.

При достижении достаточно большой скорости, когда образующиеся за обтекаемым телом вихри газа или жидкости начинают интенсивно отрываться от тела, значение с в несколько раз уменьшается; для шара оно становится приблизительно равным 0,1. Подробности можно найти в специальной литературе.

Вернемся к указанной выше оценке, исходя из квадратичнойзависимости силысопротивления от скорости.

Имеем

или

(7.4)

Рис. 7.6. Значения коэффициента лобового сопротивления для некоторых тел, поперечное сечение которых имеет указанную на рисунке форму (см. книгу П.А.Стрелкова)

Для шарика

(7.5)

Примем r = 0,1 м, ? = 0,8•103 кг/м3 (дерево). Тогда для движения в воздухе (?возд= 1,29 кг/м3) получаем v* ? 18 м/с, в воде (?воды ? 1•103 кг/м3) v* ? 0,65 м/с, в глицерине (?глицерина = 1,26•103 кг/м3) v* ? 0,58 м/с.

Сравнивая с приведенными выше оценками линейной части силы сопротивления, видим, что для движения в воздухе и в воде ее квадратичная часть сделает движение равномерным задолго до того, как это могла бы сделать линейная часть, а для очень вязкого глицерина справедливо обратное утверждение. Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения — уравнение второго закона Ньютона с учетом двух сил, действующих на тело; силы тяжести и силы сопротивления среды:

(7.6)

Движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем

(7.7)

Вопрос, который мы будем обсуждать на первом этапе, таков: каков характер изменения скорости со временем, если все параметры, входящие в уравнение (7.7), заданы? При такой постановке модель носит сугубо дескриптивный характер.

Из соображений здравого смысла ясно, что при наличии сопротивления, растущего со скоростью, в какой-то момент сила сопротивления сравняется с силой тяжести, после чего скорость больше возрастать не будет.

Начиная с этого момента, dv/dt = 0, и соответствующую установившуюся скорость можно найти из условия mg – k1v – k2v2 = 0 , решая не дифференциальное, а квадратное уравнение. Имеем

(7.8)

(второй — отрицательный — корень, естественно, отбрасываем). Итак, характер движения качественно таков: скорость при падении возрастает от v0 до ; как и по какому закону — это можно узнать, лишь решив дифференциальное уравнение (7.7).

Однако, даже в столь простой задаче мы пришли к дифференциальному уравнению, которое не относится ни к одному из стандартных типов, выделяемых в учебниках по дифференциальным уравнениям, допускающих очевидным образом аналитическое решение.

II хотя это не доказывает невозможность его аналитического решения путем хитроумных подстановок, но они не очевидны (один из лучших помощников в их поиске — справочник Камке).

Допустим, однако, что нам удастся найти такое решение, выраженное через суперпозицию нескольких алгебраических и трансцендентных функций — а как найти закон изменения во времени перемещения? — Формальный ответ прост:

(7.9)

но шансы на реализацию этой квадратуры уже совсем невелики. Дело в том, что класс привычных нам элементарных функций очень узок, и совершенно стандартна ситуация, когда интеграл от суперпозиции элементарных функций не может быть выражен через элементарные функции в принципе.

Математики давно расширили множество функций, с которыми можно работать почти так же просто, как с элементарными (т.е. находить значения, различные асимптотики, строить графики, дифференцировать, интегрировать).

Тем, кто знаком с функциями Бесселя, Лежандра, интегральными функциями и еще двумя десятками других, так называемых, специальных функций, легче находить аналитические решения задач моделирования, опирающихся на аппарат дифференциальных уравнений.

Однако даже получение результата в виде формулы не снимает проблемы представления его в виде, максимально доступном для понимания, чувственного восприятия, ибо мало кто может, имея формулу, в которой сопряжены логарифмы, степени, корни, синусы и тем более специальные функции, детально представить себе описываемый ею процесс -а именно это есть цель моделирования.

В достижении этой цели компьютер — незаменимый помощник. Независимо от того, какой будет процедура получения решения — аналитической или численной, -задумаемся об удобных способах представления результатов.

Разумеется, колонки чисел, которых проще всего добиться от компьютера (что при табулировании формулы, найденной аналитически, что в результате численного решения дифференциального уравнения), необходимы; следует лишь решить, в какой форме и размерах они удобны для восприятия.

Слишком много чисел в колонке быть не должно, их трудно будет воспринимать, поэтому шаг, с которым заполняется таблица, вообще говоря, гораздо больше шага, с которым решается дифференциальное уравнение в случае численного интегрирования, т.е.

далеко не все значения v и S, найденные компьютером, следует записывать в результирующую таблицу (табл. 7.2).

Таблица 7.2

Зависимость перемещения и скорости падения «безпарашютиста» от времени (от 0 до 15 с)

t(c) s(m) v (м/с) t(с) S(м) v (м/с)
0 200,1 35,6
4,8 9,6 235,9 36,0
18,7 17,9 272,1 36,3
40,1 24,4 308,5 36,4
66,9 28,9 345,0 36,5
97,4 31,9 381,5 36,6
130,3 33,8 418.1 36,6
164,7 35,0 454,7 36,6

Кроме таблицы необходимы графики зависимостей v(t) и S(t); по ним хорошо видно, как меняются со временем скорость и перемещение, т.е. приходит качественноепонимание процесса.

Еще один элемент наглядности может внести изображение падающего тела через равные промежутки времени. Ясно, что при стабилизации скорости расстояния между изображениями станут равными. Можно прибегнуть и к цветовой раскраске — приему научной графики, описанному выше.

Наконец, можно запрограммировать звуковые сигналы, которые подаются через каждый фиксированный отрезок пути, пройденный телом — скажем, через каждый метр или каждые 100 метров — смотря по конкретным обстоятельствам.

Надо выбрать интервал так, чтобы вначале сигналы были редкими, а потом, с ростом скорости, сигнал слышался все чаще, пока промежутки не сравняются. Таким образом, восприятию помогают элементы мультимедиа.

Поле для фантазии здесь велико.

Приведем конкретный пример решения задачи о свободно падающем теле. Герой знаменитого фильма «Небесный тихоход» майор Булочкин, упав с высоты 6000 м в реку без парашюта, не только остался жив, но даже смог снова летать.

Попробуем понять, возможно ли такое на самом деле или же подобное случается только в кино. Учитывая сказанное выше о математическом характере задачи, выберем путь численного моделирования.

Итак, математическая модель выражается системой дифференциальных уравнений

(7.10)

Разумеется, это не только абстрактное выражение обсуждаемой физической ситуации, но и сильно идеализированное, т.е. ранжирование факторов перед построением математической модели произведено.

Обсудим, нельзя ли произвести дополнительное ранжирование уже в рамках самой математической модели с учетом конкретно решаемой задачи, а именно — будет ли влиять на полет парашютиста линейная часть силы сопротивления и стоит ли ее учитывать при моделировании.

Так как постановка задачи должна быть конкретной, мы примем соглашение, каким образом падает человек. Он — опытный летчик и наверняка совершал раньше прыжки с парашютом, поэтому, стремясь уменьшить скорость, он падает не «солдатиком», а лицом вниз, «лежа», раскинув руки в стороны.

Рост человека возьмем средний — 1,7 м, а полуобхват грудной клетки выберем в качестве характерного расстояния — это приблизительно 0,4 м. Для оценки порядка величины линейной составляющей силы сопротивления воспользуемся формулой Стокса.

Для оценки квадратичной составляющей силы сопротивления мы должны определиться со значениями коэффициента лобового сопротивления и площадью тела.

Выберем в качестве коэффициента число с = 1,2 как среднее между коэффициентами для диска и для полусферы (выбор для качественной оценки правдоподобен). Оценим площадь: S = 1,7•0,4=0,7 (м2).

Выясним, при какой скорости сравняются линейная и квадратичная составляющие силы сопротивления. Обозначим эту скорость v**. Тогда

или

Ясно, что практически с самого начала скорость падения майора Булочкина гораздо больше, и поэтому линейной составляющей силы сопротивления можно пренебречь, оставив лишь квадратичную составляющую.

После оценки всех параметров можно приступить к численному решению задачи. При этом следует воспользоваться любым из известных численных методов интегрирования систем обыкновенных дифференциальных уравнений: методом Эйлера, одним из методов группы Рунге — Кутта, одним из многочисленных неявных методов.

Разумеется, у них разная устойчивость, эффективность и т.д. — эти сугубо математические проблемы здесь не обсуждаются.

Программа, реализующая метод Рунге — Кутта четвертого порядка, может быть взята из примера, приведенного в следующем параграфе или из какого-нибудь стандартного пакета математических программ.

Отметим, что существует немало программ, моделирующих простые физические процессы типа рассматриваемого.

У них реализован, в той или иной мере профессионально, диалоговый интерфейс, позволяющий вводить параметры, получать на экране таблицы, графики, движущиеся изображения.

Однако в них, как правило, остаются скрытыми физические законы, определяющие процесс, ограничения модели, возможности ее усовершенствования. Такие программы полезны скорее как сугубо иллюстративные.

Вычисления производились до тех пор, пока «безпарашютист» не опустилсянаводу. Примерно через 15 с после начала полета скорость стала постоянной и оставалась такой до приземления (рис. 7.7).

Отметим, что в рассматриваемой ситуации сопротивление воздуха радикально меняет характер движения; при отказе от его учета график скорости, изображенный на рисунке, заменился бы касательной к нему в начале координат.

Рис. 7.7. График зависимости скорости падения «безпарашютиста» от времени

В некоторых случаях для ускорения процесса работы над какой-либо задачей целесообразно вместо составления программы воспользоваться готовой прикладной программой (например, табличным процессором).

Покажем это на примере рассматриваемой задачи. В табл. 7.3 представлен небольшой фрагмент из табличного процессора Excel.

Решение находится с помощью, так называемого, исправленного метода Эйлера — одного из возможных вариантов метода Рунге — Кутта второго порядка.

Кроме того, в ячейках D2, D4, D6 в таблице будем хранить соответственно значения шага вычислений, массы «безпарашютиста», величины mg. Это связано с тем, что все константы также удобно хранить в отдельных ячейках, чтобы в случае их изменения не пришлось переписывать расчетные формулы. Достаточно записать

Таблица 7.3

Фрагмент таблицы, где представлено решение задачи о «безпарашютнсте»

А В
t v
0
=СУММ(АЗ; D2) =B3+D2/2* ( (D6-D8*B32) /D4+(D6-D8*(B3+D2*(D6-D8*B32)/D4)2)/D4)
=СУММ(А4; D2) =B4+D2/2* ( (D6-D8*B42) /D4+(D6-D8* (B4+D2* (D6- D8*B42)/D4)2)/D4)
=СУММ(А5; D2) =B5+D2/2*( (D6-D8*B52)/D4+(D6-D8*(B5+D2*(D6-D8*B52)/D4)2)/D4)
=СУМM(А6; D2) =B6+D2/2* ( (D6-D8*B62) /D4+ (D6-D8* (B6+D2* (D6-D8*B62)/D4)2)/D4)
=СУММ(А7; D2) =B7+D2/2*((D6-D8*B72)/D4+(D6-D8*(B7+D2*(D6-D8*B72)/D4)2)/D4)

формулу правильно один раз, а затем скопировать в остальные ячейки, при этом, как известно, она «настраивается» на соответствующую ячейку.

Таблица 7.4

:

Источник: //csaa.ru/svobodnoe-padenie-tela-s-uchetom-soprotivlenija/

Силы сопротивления

Формула силы сопротивления воздуха. Величина силы сопротивления воздуха

При совершенно любом движении будет фиксироваться появление между поверхностями тел или в среде, где оно осуществляется, сил сопротивления. Второе свойственное им название – силы трения.

Замечание 1

Силы сопротивления могут быть зависимыми от разновидностей трущихся поверхностей, реакций опоры тела, а также его скорости, при условии движения тела в вязкой среде (к примеру, в воздухе или воде).

Расчет сил сопротивления

С целью определения сил сопротивления потребуется применение третьего закона Ньютона. Такая величина, как сила сопротивления, будет численно равной силе, которую потребуется приложить с целью равномерного движения предмета по горизонтальной ровной поверхности. Это становится возможным с помощью динамометра.

Таким образом, искомая величина оказывается прямо пропорциональной массе тела. Стоит при этом учитывать во внимание, что для более точного подсчета потребуется выбрать $u$ коэффициент, зависимый от материала изготовления опоры. Также принимается во внимание материал изготовления самого предмета исследования. При расчете применяется постоянная $g$, чье значение 9,8 $м/с2$.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

В условиях движения тела на высоте, на него влияет сила трения воздуха, зависимая от скорости перемещения предмета. Искомую величину определяют на основании такой формулы (подходящей исключительно для тел с передвижением с небольшой скоростью):

$F = va$, где:

  • $v$ – скорость движения предмета,
  • $a$ – коэффициент сопротивления среды.

Разновидности сил сопротивления

Существуют такие разновидности сил сопротивления:

  1. Сила сопротивления качению $P_f$, зависимая от таких факторов, как: разновидности и состояния опорной поверхности, скорости движения, давления воздуха и пр. Коэффициент сопротивления качению $f$ зависеть при этом состояния и типа опорной поверхности. С повышением температуры и давления, указанный коэффициент уменьшается.
  2. Сила сопротивления воздуха (лобовое сопротивление) $Р_в$ возникает за счет разницы давлений. Данный показатель окажется тем выше, чем большим будет вихреобразование как в передней, так и в задней части объекта движения. Величина вихреобразования будет зависеть от формы движущихся тел.

Наиболее значимым будет воздействие на сопротивление движению передней части. Так, при создании закругления в передней и задней части плоскостенной фигуры, сопротивление возможно уменьшить на 72 %. Сила лобового сопротивления $Р_{вл}$ определяется по такой формуле:

$P_{вл} = {c_xpF_в}\frac{v2}{2}$, где:

  • $с_х$– коэффициент лобового сопротивления (обтекаемости);
  • $p$- плотность воздуха;
  • $F_в$ –площадь лобового сопротивления (миделевого сечения) определяется по формуле

Сила сопротивления воздуха ориентирована в направлении, противоположном вектору скорости объекта движения (например, автомобиля). Обычно она рассматривается как сконцентрированная сила, приложенная в отношении точки (центра парусности объекта), не совпадающей при этом с центром массы исследуемого объекта.

Сила сопротивления разгону поступательно движущейся массы объекта, согласно второму закону Ньютона, определяется таким образом:

$Рj = m\frac{dV}{dt}$, где:

  • $m$– масса автомобиля;
  • $\frac{dv}{dt}$ – ускорение центра масс.

Силы сопротивления при больших скоростях

В случае, когда мы имеем дело с малыми скоростями, сопротивление будет зависеть от:

  • вязкости жидкости;
  • скорости движения;
  • линейных размеров тела.

Рассмотрим действие законов трения при больших скоростях. Так, к воздуху и в особенности, к воде законы вязкого трения будут мало применимыми. Даже при наличии таких скоростей, как 1 см/с, они будут пригодными исключительно в отношении тел крошечных размеров (в миллиметрах).

Замечание 2

Сопротивление, которое испытывает ныряющий в воду пловец, ни в коей мере не будет подчиняться действию закона вязкого трения.

При медленном движении жидкость станет плавно обтекать предмет движения. При этом сила сопротивления, которую он будет преодолевать, и окажется силой вязкого трения.

В условиях большой скорости, позади движущегося объекта возникнет уже более сложное движение жидкости. В жидкости начнут то появляться, то исчезать разные струйки, формируя при этом необычные по форме фигуры, вихри, кольца. Таким образом, картина струек будет подвержена постоянным изменениям. Возникновение подобного движения получило название турбулентного.

Турбулентное сопротивление будет зависимым от скорости и размеров предмета не так, как при вязком. Так, оно окажется пропорциональным квадратам скорости и линейных размеров. Вязкость жидкости при подобном движении перестает иметь решающее значение, а определяющим свойством выступает ее плотность. Таким образом, для силы $F$ турбулентного сопротивления справедлива формула:

$F=pv2L2$, где:

  • $v$– скорость движения,
  • $L$– линейные размеры предмета,
  • $p$ – плотность среды.

Источник: //spravochnick.ru/fizika/ponyatie_sily_v_fizike/sily_soprotivleniya/

9.4. Движение тел в среде с сопротивлением

Формула силы сопротивления воздуха. Величина силы сопротивления воздуха

Со времен опытов Галилея на Пизанской башне известно, что все тела падают в поле силы тяжести с одинаковым ускорением g.

Однако каждодневная практика указывает на другое: легкое перышко падает медленнее тяжелого металлического шарика. Понятна и причина этого — сопротивление воздуха.

Уравнения движения. Если ограничиться случаем поступательного движения невращающихся тел в неподвижной среде с сопротивлением, то сила сопротивления будет направлена против скорости. В векторном виде ее можно записать как

где — абсолютная величина этой силы, a — модуль скорости тела. Учет сопротивления среды меняет вид уравнений движения тела, брошенного под углом к горизонту:

В приведенных уравнениях учтена также выталкивающая сила Архимеда, действующая на тело: ускорение свободного падения g заменено на меньшую величину

где — плотность среды (для воздуха = 1.29 кг/м3), а — средняя плотность тела.

Действительно, вес тела в среде уменьшается на величину выталкивающей силы Архимеда

Выражая объём тела через его среднюю плотность

приходим к выражению

При наличии сопротивления воздуха скорость падающего тела не может расти безгранично. В пределе она стремится к некоторому установившемуся значению, которое зависит от характеристик тела. Если тело достигло установившейся скорости падения , то из уравнений движения следует, что сила сопротивления равна весу тела (с учётом архимедовой силы):

Сила сопротивления как мы вскоре убедимся, есть функция скорости падения. Стало быть, полученное выражение для силы сопротивления представляет собой уравнение для определения установившейся скорости падения . Ясно, что при наличии среды энергия тела частично расходуется на преодоление её сопротивления.

Число Рейнольдса. Разумеется, уравнения движения тела в жидкости невозможно даже начать решать, пока нам ничего неизвестно о модуле силы сопротивления.

Величина этой силы существенно зависит от характера обтекания тела встречным потоком газа (или жидкости). При малых скоростях этот поток является ламинарным (то есть слоистым).

Его можно представить себе как относительное движение не смешивающихся между собой слоев среды.

Ламинарное течение жидкости демонстрируется на опыте, показанном на рис. 13.

Как уже отмечалось в главе 9.3, при относительном движении слоёв жидкости или газа между этими слоями возникают силы сопротивления движению, которые называются силами внутреннего трения.

Эти силы обусловлены особым свойством текучих тел — вязкостью, которая характеризуется численно коэффициентом вязкости . Приведем характерные значения для различных веществ: для воздуха ( = 1,8·10-5 Па·с), воды ( = 10–3 Па·с), глицерина ( = 0,85 Па·с).

Эквивалентное обозначение единиц, в которых измеряется коэффициент вязкости: Па·с=кг·м–1·с–1.

Между движущимся телом и средой всегда существуют силы сцепления, так что непосредственно вблизи поверхности тела слой газа (жидкости) полностью задерживается, как бы «прилипая» к нему. Он трется о следующий слой, который слегка отстает от тела.

Тот, в свою очередь, испытывает силу трения со стороны еще более удаленного слоя и т.д. Совсем далекие от тела слои можно считать покоящимися.

Теоретический расчет внутреннего трения для движения шарика диаметром D приводит к формуле Стокса:

Подставляя формулу Стокса в выражение для силы сопротивления при установившемся движении, находим выражение для установившейся скорости падения шарика в среде:

Видно, что чем легче тело, тем меньше скорость его падения в атмосфере. Полученное уравнение объясняет нам, почему пушинка падает медленнее,чем стальной шарик.

При решении реальных задач, например, вычислении установившейся скорости падения парашютиста при затяжном прыжке, не следует забывать, что сила трения пропорциональна скорости тела лишь для относительно медленного ламинарного встречного потока воздуха.

При увеличении скорости тела вокруг него возникают воздушные вихри, слои перемешиваются, движение в какой-то момент становится турбулентным, и сила сопротивления резко возрастает.

Внутреннее трение (вязкость) перестает играть сколько бы то ни было заметную роль.

Рис. 9.15 Фотография струи жидкости при переходе от ламинарного течения к турбулентному (число Рейнольдса Re=250)

Возникновение силы сопротивления можно тогда представить себе следующим образом. Пусть тело прошло в среде путь . При силе сопротивления на это затрачивается работа

Если площадь поперечного сечения тела равна , то тело «натолкнется» на частицы, занимающие объем . Полная масса частиц в этом объеме равна · Представим, что эти частицы полностью увлекаются телом, приобретая скорость . Тогда их кинетическая энергия становится равной

Эта энергия не появилась ниоткуда: она создана за счет работы внешних сил по преодолению силы сопротивления. Стало быть, A=К, откуда

Мы видим, что теперь сила сопротивления сильнее зависит от скорости движения, становясь пропорциональной ее второй степени (ср. с формулой Стокса). В отличие от сил внутреннего трения ее часто называют силой динамического лобового сопротивления.

Однако предположение о полном увлечении частиц среды движущимся телом оказывается слишком сильным. В реальности любое тело так или иначе обтекается потоком, что уменьшает силу сопротивления. Принято использовать так называемый коэффициент сопротивленияC, записывая силу лобового сопротивления в виде:

При турбулентном потоке в некотором интервале скоростей C не зависит от скорости движения тела, но зависит от его формы: скажем, для диска он равен единице, а для шара примерно 0,5.

Подставляя формулу для силы лобового сопротивления в выражение для силы сопротивления при установившемся движении, приходим к иному, нежели ранее полученная формула, выражению для установившейся скорости падения шара (при C = 0,5):

Применяя найденную формулу к движению парашютиста весом 100 кг с поперечным размером парашюта 10 м, находим

что соответствует скорости приземления при прыжке без парашюта с высоты 2 м. Видно, что для описания движения парашютиста больше подходит формула, соответствующая турбулентному потоку воздуха.

Выражение для силы сопротивления с коэффициентом сопротивления удобно использовать во всем интервале скоростей.

Поскольку при малых скоростях режим сопротивления меняется, то коэффициент сопротивления в области ламинарного течения и в переходной области к турбулентному течению будет зависеть от скорости тела. Однако прямая зависимость C от невозможна, поскольку коэффициент сопротивления безразмерен.

Значит, он может быть лишь функцией какой-то безразмерной комбинации с участием скорости. Такая комбинация, играющая важную роль в гидро- и аэродинамике, называется числом Рейнольдса (см. тему 1.3).

Число Рейнольдса — это параметр, описывающий смену режима при переходе от ламинарного течения к турбулентному. Таким параметром может служить отношение силы лобового сопротивления к силе внутреннего трения.

Подставляя в формулу для силы сопротивления выражение для площади поперечного сечения шара , убеждаемся, что величина силы лобового сопротивления с точностью до несущественных сейчас числовых факторов определяется выражением

а величина силы внутреннего трения — выражением

Отношение этих двух выражений и есть число Рейнольдса:

Если речь идет не о движении шара, то под D понимается характерный размер системы (скажем, диаметр трубы в задаче о течении жидкости).

По самому смыслу числа Рейнольдса ясно, что при его малых значениях доминируют силы внутреннего трения: вязкость велика и мы имеем дело с ламинарным потоком.

При больших значениях числа Рейнольдса, наоборот, доминируют силы динамического лобового сопротивления и поток становится турбулентным.

Число Рейнольдса имеет огромное значение при моделировании реальных процессов в меньших (лабораторных) масштабах.

Если для двух течений разных размеров числа Рейнольдса одинаковы, то такие течения подобны, и возникающие в них явления могут быть получены одно из другого простым изменением масштаба измерения координат и скоростей.

Поэтому, например, на модели самолета или автомобиля в аэродинамической трубе можно предугадать и изучить процессы, которые возникнут в процессе реальной эксплуатации.

Коэффициент сопротивления. Итак, коэффициент сопротивления в формуле для силы сопротивления зависит от числа Рейнольдса:

Эта зависимость имеет сложный характер, показанный (для шара) на рис. 9.16. Теоретически получить эту кривую трудно, и обычно используют зависимости, экспериментально измеренные для данного тела. Однако возможна качественная ее интерпретация.

Рис. 9.16. Зависимость коэффициента сопротивления от числа Рейнолъдса (римскими цифрами показаны области значений Re; которым соответствуют различные режимы течения воздушного потока)

Область I. Здесь число Рейнольдса очень мало ( 

Источник: //online.mephi.ru/courses/physics/osnovi_mehaniki/data/lecture/9/p4.html

Сила сопротивления воздуха

Формула силы сопротивления воздуха. Величина силы сопротивления воздуха

При движении автомобиль преодолевает сопротивление воздуха, которое складывается из нескольких сопротивлений. Передней частью автомобиля воздух сжимается и раздвигается, в то время как в задней части автомобиля создается разрежение, которое вызывает образование завихрений (рис. 6).

Рис. 6. Схема обтекания автомобиля воздухом

Наибольшая часть мощности при преодолении сопротивления воздуха затрачивается на образование воздушных вихрей. Если все сопротивление воздуха принять за 100%, то на образование воздушных вихрей будет приходиться примерно 60%.

Около 25% составляет сопротивление, создаваемое выступающими частями автомобиля (крылья, подножки и т. д.), а также сопротивление, возникающее при прохождении воздуха через радиатор.

Около 15% общего сопротивления воздуха приходится на трение поверхности автомобиля об обтекающие его слои воздуха.

Сопротивление воздуха движению автомобиля тем больше, чем выше его скорость и чем больше его лобовая площадь.

Опытным путем установлено, что сила сопротивления воздуха

где К — коэффициент сопротивления воздуха, который представляет собой силу сопротивления воздуха (в кГ), приходящуюся на 1 м2 лобовой площади автомобиля, движущегося со скоростью 1 м/сек.

Размерность этого коэффициента кГ x сек2/м4; F — лобовая площадь автомобиля, определяемая его проекцией на плоскость, перпендикулярную продольной оси автомобиля, в м2; va — скорость движения автомобиля в м/сек.

Произведение KF принято называть фактором обтекаемости и обозначать W.

Фактор обтекаемости определяет зависимость силы сопротивления воздуха от размеров и формы автомобиля.

Лобовую площадь легкового автомобиля с достаточной степенью точности можно вычислить по формуле

а грузового по формуле

где

В1 — наибольшая ширина автомобиля в м;

На — наибольшая высота автомобиля в м;

В — колея автомобиля в м.

Если скорость автомобиля va взята в км/ч, то

Мощность, необходимая для преодоления сопротивления воздуха,

Для уменьшения сопротивления воздуха движению автомобиля необходимо, чтобы кузов и кабина автомобиля имели как можно меньше острых углов, особенно в задней части, в силу чего наблюдается значительное вихреобразование.

Таблица 1

Значения коэффициента К сопротивления воздуха и величин лобовой площади F

Большое значение для уменьшения сопротивления воздуха имеет правильно выбранный контур автомобиля.

Так, удлинение хвостовой части благоприятно сказывается на снижении фактора обтекаемости.

Значительное влияние на сопротивление воздуха оказывают выступающие из общих контуров автомобиля детали (крылья, колеса, подножки), крепление запасных колес, форма нижней части кузова и др.

Некоторые значения коэффициента сопротивления воздуха и величины лобовой площади

Сила тяжести — главная физическая сила, воздействующая на автомобиль. Сила тяжести всегда устремлена вертикально вниз, при этом она равномерно рассредоточивается по всем осям и колесам транспортного средства. Вес машины давит на поверхность проезжей части, и с увеличением этого веса пропорционально увеличивается сила сцепления колес с дорожным покрытием.

Эта сила особенно заметно действует, когда машина трогается с места, а также при последующем движении ведущих колес. При движении по наклонной дороге сила тяжести распадается на две составляющие.

Одна давит на машину и прижимает ее к поверхности проезжей части, а вторая стремится опрокинуть ее по направлению движения или в поперечном направлении дороги (это зависит от направления уклона).

Чем выше центр тяжести и чем больше угол наклона автомобиля, тем больше опрокидывающая сила, следовательно, выше вероятность опрокидывания.

Помимо силы тяжести и силы опрокидывания на любое транспортное средство оказывает влияние ряд других физических сил, среди которых можно отметить следующие:

  • сила сопротивления качению возникает при трении шины о дорогу и подшипников в колесах;
  • сила сопротивления подъему определяется массой автомобиля и углом подъема;
  • сила инерции покоя, когда автомобиль трогается с места и разгоняется, направлена против движения;
  • сила инерции движения направлена по ходу движения;
  • центробежная сила направлена по радиусу от центра кривой поворота и стремится снести автомобиль с дороги;
  • сила сопротивления воздуха направлена против движения, величина зависит от обтекаемости автомобиля и скорости его движения;
  • сила давления сильного бокового ветра или аэродинамического влияния потоков воздуха от большого обгоняющего или обгоняемого автомобиля стремится снести машину с дороги и зависит от парусности (боковой площади кузова);
  • подъемная сила возникает при движении с большой скоростью от давления потока воздуха, попадающего под передок автомобиля, стремится оторвать колеса от дороги, ухудшая сцепление колес с дорогой и управляемость;
  • сила сноса возникает при заносе задних или сносе передних колес;
  • сила сцепления зависит от нагрузки на ведущие колеса, состояния и качества дорожного покрытия, давления в шинах, скорости, степени износа протектора;
  • сила тяги определяется величиной крутящего момента, переданного от трансмиссии на колеса, вызывает движение автомобиля за счет отталкивания колес от дороги;
  • сила торможения возникает при торможении автомобиля.

Транспортное средство будет двигаться только при условии, что сила тяги превышает силу инерции покоя, но при этом уступает силе сцепления ведущих колес с дорогой.

Если сила тяги ведущих колес автомобиля превышает силу сцепления этих колес с поверхностью проезжей части, то возникает пробуксовывание.

Когда сила сцепления колес с дорожным покрытием превышает тормозную силу, транспортное средство затормаживается, если она меньше тормозной силы — машина скользит «юзом».

Инерция движения позволяет транспортному средству ехать на большой скорости с незначительной подачей топлива (поэтому движение с постоянной скоростью 80–90 км/ч считается самым экономичным), а также на протяжении какого-то времени с отключенным двигателем (это называется «накатом»).

Силе торможения оказывают содействие силы сопротивления качению, подъему, воздуха и центробежная сила. Препятствует процессу торможения сила инерции движения, которая особенно возрастает при движении с уклона.

Во время торможения, а также при движении с уклона сила тяжести перемещается вперед и формирует продольный опрокидывающий момент.

Он создает дополнительную нагрузку на переднюю ось, которую можно использовать для улучшения сцепления с дорожным покрытием на повороте, тормозя двигателем и поворачивая колеса.

Величина центробежной силы определяется скоростью и весом транспортного средства, а также радиусом поворота. Следовательно, добиться уменьшения этой силы можно, снизив скорость движения либо увеличив радиус поворота.

В результате бокового скольжения колес может возникать такое опасное явление, как снос передних и занос задних колес. Это может стать причиной вращения автомобиля вокруг вертикальной оси наподобие волчка. Снос передних и занос задних колес могут возникать по следующим причинам:

  • при движении — разные тяговые силы на колесах;
  • при торможении — разные тормозные силы на колесах одной оси, разные силы сцепления колес с дорогой, неправильное размещение груза относительно продольной оси автомобиля;
  • на повороте — торможение, резкий поворот управляемых колес, сила инерции превышает силу сцепления колес с дорогой.

При заносе автомобиль может опрокинуться по следующим причинам:

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/15_126705_zakreplenie-gruntov.html

Мед-Центр Здоровье
Добавить комментарий