Что такое дисперсия света в физике кратко. Дисперсия света в природе и искусстве

Дисперсия света. урок. Физика 11 Класс

Что такое дисперсия света в физике кратко. Дисперсия света в природе и искусстве

До второй половины XVII века не было полной ясности, что же такое цвет. Некоторые ученые говорили, что это свойство самого тела, некоторые заявляли, что это различные сочетания светлого и темного, тем самым путая понятия цвета и освещенности. Такой цветовой хаос царил до того времени, пока Исаак Ньютон не провел опыт по пропусканию света сквозь призму (рис. 1).

Рис. 1. Ход лучей в призме (Источник)

Вспомним, что луч, проходящий через призму, терпит преломление при переходе из воздуха в стекло и потом еще одно преломление – из стекла в воздух. Траектория луча описывается законом преломления, а степень отклонения характеризуется показателем преломления. Формулы, описывающие эти явления:

  = n;  ;    =  

Рис. 2. Опыт Ньютона (Источник)

В темной комнате сквозь ставни проникает узкий пучок солнечного света, на его пути Ньютон разместил стеклянную трехгранную призму.

Пучок света, проходя через призму, преломлялся в ней, и на экране, стоявшем за призмой, появлялась разноцветная полоса, которую Ньютон назвал спектром (от латинского «spectrum» – «видение»).

Белый цвет превратился сразу во все цвета (рис. 2). Какие же выводы сделал Ньютон?

1. Свет имеет сложную структуру (говоря современным языком – белый свет содержит электромагнитные волны разных частот).

2. Свет различного цвета отличается степенью преломляемости (характеризуется разными показателями преломления в данной среде).

3. Скорость света зависит от среды.

Эти выводы Ньютон изложил в своем знаменитом трактате «Оптика». Какова же причина такого разложения света в спектр?

Как показывал опыт Ньютона, слабее всего преломлялся красный цвет, а сильнее всего – фиолетовый. Вспомним, что степень преломления световых лучей характеризует показатель преломления n.

Красный цвет от фиолетового отличается частотой, у красного частота меньше, чем у фиолетового.

Раз показатель преломления становится все больше при переходе от красного конца спектра к фиолетовому, можно сделать вывод: показатель преломления стекла увеличивается с возрастанием частоты света. В этом и состоит суть явления дисперсии.

Вспомним, как показатель преломления связан со скоростью света:

n =  => n ~

n ~ ν; V ~   => ν =

n – показатель преломления

С – скорость света в вакууме

V – скорость света в среде

ν – частота света

Значит, чем больше частота света, тем с меньшей скоростью свет распространяется в стекле, таким образом, наибольшую скорость внутри стеклянной призмы имеет красный цвет, а наименьшую скорость – фиолетовый.  

Различие скоростей света для разных цветов осуществляется только при наличии среды, естественно, в вакууме любой луч света любого цвета распространяется с одной и той же скоростью  м/с. Таким образом мы выяснили, что причиной разложения белого цвета в спектр является явление дисперсии.

Дисперсия – зависимость скорости распространения света в среде от его частоты.

Открытое и исследованное Ньютоном явление дисперсии ждало своего объяснения более 200 лет, лишь в XIX веке голландским ученым Лоренсом была предложена классическая теория дисперсии.

Причина этого явления – во взаимодействии внешнего электромагнитного излучения, то есть света со средой: чем больше частота этого излучения, тем сильнее взаимодействие, а значит, тем сильнее будет отклоняться луч.

Дисперсия, о которой мы говорили, называется нормальной, то есть показатель частоты растет, если частота электромагнитного излучения растет.

В некоторых редко встречающихся средах возможна аномальная дисперсия, то есть показатель преломления среды растет, если частота падает.

Мы увидели, что каждому цвету соответствует определенная длина волны и частота. Волна, соответствующая одному и тому же цвету, в разных средах имеет одну и ту же частоту, но разные длины волн.

Чаще всего, говоря о длине волны, соответствующей определенному цвету, имеют в виду длину волны в вакууме или воздухе. Свет, соответствующий каждому цвету, является монохроматическим.

«Моно» – один, «хромос» – цвет.

Рис. 3. Расположение цветов в спектре по длинам волн в воздухе (Источник)

Самый длинноволновый – это красный цвет (длина волны – от 620 до 760 нм), самый коротковолновый – фиолетовый (от 380 до 450 нм) и соответствующие частоты (рис. 3). Как видите, белого цвета в таблице нет, белый цвет – это совокупность всех цветов, этому цвету не соответствует какая-то строго определенная длина волны.

Чем же объясняются цвета тел, которые нас окружают? Объясняются они способностью тела отражать, то есть рассеивать падающее на него излучение.

Например, на какое-то тело падает белый цвет, который является совокупностью всех цветов, но это тело лучше всего отражает красный цвет, а остальные цвета поглощает, то оно нам будет казаться именно красного цвета.

Тело, которое лучше всего отражает синий цвет, будет казаться синего цвета и так далее. Если же тело отражает все цвета, оно в итоге будет казаться белым.

Именно дисперсией света, то есть зависимостью показателя преломления от частоты волны, объясняется прекрасное явление природы – радуга (рис. 4).

Рис. 4. Явление радуги (Источник)

Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды, дождя или тумана, парящими в атмосфере.

Эти капельки по-разному отклоняют свет разных цветов, в результате белый цвет разлагается в спектр, то есть происходит дисперсия, наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим дугам.

Также дисперсией объясняется и замечательная игра цвета на гранях драгоценных камней.  

1. Явление дисперсии – это разложение света в спектр, обусловленное зависимостью показателя преломления от частоты электромагнитного излучения, то есть частоты света. 2. Цвет тела определяется способностью тела отражать или рассеивать ту или иную частоту электромагнитного излучения.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика – 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Какие выводы сделал Ньютон после опыта с призмой?
  2. Дать определение дисперсии.
  3. Чем определяется цвет тела?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Источник: https://interneturok.ru/lesson/physics/11-klass/boptikab/dispersiya-sveta

Дисперсия света в природе и искусстве

Что такое дисперсия света в физике кратко. Дисперсия света в природе и искусстве

Дисперсия света

Каждый из нас когда-нибудь видел, как переливаются лучи на граненых изделиях из стекла или, например, на бриллиантах. Наблюдать это можно благодаря такому явлению, как дисперсия света.

Это эффект, отражающий зависимость показателя преломления предмета (вещества, среды) от длины (частоты) световой волны, которая проходит через этот предмет.

Следствием такой зависимости является разложение луча на цветовой спектр, например, при прохождении через призму.

Дисперсия света выражается следующим равенством:

n = ƒ (ƛ)

где n – показатель преломления, ƛ – частота, а ƒ – длина волны. Показатель преломления увеличивается с ростом частоты и уменьшением длины волны. Дисперсию мы нередко наблюдаем в природе.

Самым красивым ее проявлением является радуга, которая образуется благодаря рассеиванию солнечных лучей при прохождении их через многочисленные капли дождя.

История открытия и исследований.

В 1665-1667 годах в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов».

Уже в 1 веке новой эры было известно, что при прохождении через прозрачный монокристалл с формой шестиугольной призмы солнечный свет разлагается в цветную полоску – спектр. Ещё раньше, в 4 веке до новой эры, древнегреческий учёный Аристотель выдвинул свою теорию цветов.

Он полагал, что основным является солнечный (белый) свет, а все остальные цвета получаются из него добавлением к нему различного количества тёмного света.

Такое представление о свете господствовало в науке вплоть до 17 века, несмотря на то, что были проведены многочисленные опыты по разложению солнечного света с помощью стеклянных призм.

Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор.

Первый опыт по дисперсии был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму.

На противоположной стене он получил изображение в виде полоски чередующихся цветов.

Полученный таким образом спектр солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.

Установление именно семи основных цветов спектра в известной степени произвольно: Ньютон стремился провести аналогию между спектром солнечного света и музыкальным звуковым рядом.

Если же рассматривать спектр без подобного предубеждения, то полоса спектра возникающего из-за дисперсии распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.

Вообще же человеческий глаз способен различать в спектре солнечного света до 160 различных цветовых оттенков.

В последующих опытах по дисперсии Ньютону удалось соединить цветные лучи в белый свет.

В результате своих исследований Ньютон, в противоположность Аристотелю, пришёл к выводу, что при смешивании «белизны и черноты никакого цвета не возникает…». Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.

Впоследствии учёные установили то факт, что, рассматривая свет как волну, каждому цвету следует сопоставить свою длину волны. Очень важно, что эти длины волн меняются непрерывным образом, соответствуя различным оттенкам каждого цвета.

Изменение показателя преломления среды в зависимости от длины распространяющейся в ней волны называется дисперсией (от латинского глагола «рассеивать»). Показатель преломления обычного стекла близок к 1.5 для всех длин волн видимого света.

Опыты Ньютона и других учёных показывали, что с увеличением длины волны света показатель преломления исследуемых веществ монотонно уменьшается.

Однако в 1860 году, измеряя показатель преломления паров йода, французский физик Леру обнаружил, что красные лучи преломляются этим веществом сильнее, чем синие. Это явление он назвал аномальной дисперсией света.

В дальнейшем аномальная дисперсия была обнаружена во многих других веществах.

В современной физике как нормальная, так и аномальная дисперсия света объясняются единым образом. Отличие нормальной дисперсии от аномальной заключается в следующем. Нормальная дисперсия происходит с лучами света, длина волны которых далека от области поглощения волн данным веществом. Аномальная дисперсия наблюдается только в области поглощения.

Если внимательно присмотреться к дисперсии света, то можно обнаружить её связь с проникающей способностью электромагнитных излучений. Действительно, чем короче длина волны электромагнитного излучения, тем больше шансов у излучения проникнуть сквозь вещество, в пространстве между атомами. Именно поэтому, рентгеновское и гамма-излучение обладают очень большой проникающей способностью.

Дисперсия света в природе и искусстве

Из-за дисперсии можно наблюдать разные цвета света.

Радуга, чьи цвета обусловлены дисперсией, – один из ключевых образов культуры и искусства.

Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметов или материалов.

В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.

Разложение света в спектр (вследствие дисперсии) при преломлении в призме – довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

Открытие дисперсии стало в истории науки весьма значительным. На надгробии ученого есть надпись с такими словами: «Здесь покоится сэр Исаак Ньютон, дворянин, который… первый с факелом математики объяснил движения планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и проявляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. …Пусть смертные радуются, что существовало такое украшение рода человеческого».

Источник: https://megaobuchalka.ru/7/30950.html

Презентация и конспект урока по физике на тему

Что такое дисперсия света в физике кратко. Дисперсия света в природе и искусстве

КОНСПЕКТ УРОКА ФИЗИКИ

11 КЛАСС

Тема урока: ДИСПЕРСИЯ СВЕТА

Гаджимамедова Гульнара тофиковна

учитель физики МБОУ «СОШ № 46»

г.Махачкала

Урок по физике в 11-м классе по теме “Дисперсия света”

Цели урока:

  • дать понятие о дисперсии света и объяснить ее с точки зрения волновой теории,
  • объяснить происхождение цветов окружающих нас тел.

Оборудование:

  • компьютер, мультимедийный проектор для демонстрации презентации,
  • презентация по теме: “Дисперсия света”.

Ход урока

(Слайд 1) Сегодня мы продолжим разговор о световых явлениях и законах распространения света. Но сначала вспомним, что же мы уже изучили о световых явлениях.

Повторение пройденного материала:

  1. Как свет распространяется в однородной прозрачной среде?

  2. Всегда ли свет распространяется прямолинейно? В каких случаях нет?

  3. Закон преломления света.

  4. Нарисовать ход лучей в призме.

  5. Оптически плотная среда – что это за среда?

  6. Показатель преломления среды.

  7. Связь частоты света со скоростью его распространения.

  8. Связь показателя преломления среды со скоростью света.

Сегодня мы продолжим разговор о световых явлениях и законах распространения света

Свет имеет еще много тайн. Одна из них – явление дисперсии.

Тема нашего урока “Дисперсия”. (Слайд 2)

Цель урока: дать понятие о дисперсии света и объяснить ее с точки зрения волновой теории, объяснить происхождение цветов окружающих нас тел.

(Слайд 3) Слово “дисперсия” происходит от латинского слова dispersio, что в буквальном переводе означает “рассеяние, развеивание”.

Дисперсия света – это зависимость показателя преломления света от частоты колебаний (или длины волны).

(Прочитать определение еще раз)

Вам что-нибудь стало понятно о дисперсии после этой фразы? Или для вас это звучит, как набор слов? Надеюсь, что после сегодняшнего урока вы будите понимать эту фразу.

(Слайд 4) Явление дисперсиибыло открыто сторонником корпускулярной теории света И.Ньютоном. (Слайд 5) Открытие Ньютоном и изучение явления дисперсии света считается одним из важнейших его открытий. На надгробном памятнике, поставленном в 1731 году, изображены фигуры юношей, держащих в руках эмблемы самых важных открытий Ньютона.

В руках одного из юношей – призма, а в надписи на памятнике есть такие слова: “Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов. Он исследовал различие световых лучей и проявляющиеся при этом различные свойства цветов, чего ранее никто не подозревал …

Пусть смертные радуются, что существует такое украшение рода человеческого”. ( слайд 6).В 1666 году англ. физик Исаак Ньютон обратил внимание на радужную окраску изображений , даваемых объективом телескопа. Он заинтересовался этим явлением и поставил опыт. (Слайд 7) Ньютон направил световой пучок малого поперечного сечения на призму.

Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в ставне. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. (Слайд 8) Эту радужную полоску Ньютон назвал спектром (от лат. слова spectrum – “вuдение”).

Замечательно, что этот опыт пережил столетия, и его методика без существенных изменений используется до сих пор.

Пронаблюдаем это явление с помощью спектроскопа.

Фронтальный эксперимент: учащиеся наблюдают разложение белого света в трехгранной стеклянной призме спектроскопа.

Сейчас мы посмотрим получение спектра с помощью проекционного аппарата.

Просмотр видеоролика: Физика. Волновая оптика. № 18. Школьный физический эксперимент. Первый образовательный телеканал. © Телекомпания СГУ ТВ, 2006 )( слайд 9)

Проделав опыт, Ньютон сделал вывод, что белый свет состоит из семи цветов. Их совместное действие дает нам ощущение белого света, а после прохождения через призму эти цвета разделяются. Ньютон доказал это, направив эту радужную полосу на вторую призму и получив опять белый свет.

 (Слайд 10) В газете “Нью-Йорк Таймс” была опубликована статья сотрудника философского факультета университета Нью-Йорка Роберта Криза и историка Брукхевенской Национальной Лаборатории Стони Брук, которые провели опрос среди американских физиков, чтобы определить 10 красивейших экспериментов за всю историю этой науки.

И данный опыт Исаака Ньютона вошел в эту десятку красивейших опытов.

Раскладывать свет на цвета люди научились давно, они использовали для этого стеклянные призмы. Аристотель объяснял появление цветов тем, что, проходя через призму, свет смешивается с тьмой и окрашивается в разные цвета. Немного темноты, добавленной к свету, дает красный свет.

Большое ее количество – фиолетовый. Эта теория господствовала в науке долгое время. Но, продолжая проводить свои опыты, Исаак Ньютон изумительно просто опроверг теорию Аристотеля.

Он направил на призму красный свет и тот, пройдя через призму, не изменяет окраску, и новых цветов не появилось.

Значит, призма не раскрашивает белый свет, а разделяет его на содержащиеся в нем простые составные цветовые части.

Разложение белого света есть следствие дисперсии.

Теорию света Ньютона подверг резкой критике выдающийся немецкий поэт И. В. Гете. (слайд 11) Может быть, не все знают, что Гете был и видным естествоиспытателем. Он писал: “Утверждение Ньютона – чудовищное предположение. Не может быть, что самый прозрачный, самый чистый цвет – белый – оказался смесью цветных лучей”.

Гете считал, что исследованный Ньютоном свет – это уже не тот свет, с каким мы встречаемся в естественной обстановке, а свет, “замученный всякого рода орудиями пытки – щелями, призмами, линзами”. Гете призывал:

Друзья, избегайте темной комнаты,Где вам искажают светИ самым жалким образом

Склоняются перед искаженными образами.

(Слайд 12) А что вам напоминает спектр?

Правильно, радугу.

А сколько цветов вы видите? Каких?

То, что в радуге семь цветов – это всеобщее заблуждение, всеми повторяемое и обычно не проверяемое. Посмотрите внимательнее на радугу и рассмотрите ее не предвзято. Сколько вы видите цветов?  (5: красный, желтый, зеленый, голубой и фиолетовый)

Они не имеют резких границ, а переходят один в другой постепенно, так что, кроме пе-речисленных основных цветов, различаются промежуточные оттенки: красно – желтый (оран-жевый), желто-зеленый, зелено-голубой, фиолетово-голубой (синий). Значит, в солнечном спектре либо 5 цветов, либо 9 (если считать промежуточные). Откуда же взялось число 7?

(Гипотезы учеников)

Ньютон первоначально тоже различал только пять цветов. Стремясь создать соответствие между числом цветов спектра и числом основных тонов музыкальной гаммы, Ньютон добавил к 5 перечисленным цветам спектра еще два. (7 чудес света, 7 дней недели, на 7 небе)

Что же касается радуги, то здесь не удается заметить даже и 5 оттенков. Обычно мы видим 3 цвета (красный, зеленый, фиолетовый), иногда различается желтый.

Но так как Исаак Ньютон решил, что в спектре 7 цветов, то мы вынуждены тоже так считать.

Последовательность цветов в спектре легко запоминается (Слайд 13):

Каждый Охотник Желает Знать Где Сидит Фазан;

Как Однажды Жак – Звонарь Городской Сломал Фонарь.

Каждый цвет спектра является монохроматическим. Монохроматический свет – одноцветный свет.

В: Что такое свет с точки зрения физики? (О: это электромагнитная волна)

Чем отличаются волны друг от друга? (О: длиной и частотой)

Свет разных цветов – это электромагнитные волны различной длины и частоты.

Монохроматический свет – одноцветный свет, каждой цветности соответствует своя длина и частота волны (в вакууме). (Слайд 14)

Вернемся к опытам Исаака Ньютона. Почему в призме волны делятся? Какое явление наблюдается при прохождении света через призму? (О: преломление света)

Какой цвет в проводимых опытах испытывал наибольшее преломление? (О: фиолетовый) Наименьшее преломление? (О: красный). (Слайд 15)

Очевидно, nф > nк. Абсолютный показатель преломления связан со скоростью распространения света в этой среде формулой . Следовательно, nф= и nк=

Отсюда, nф vф = nк vк.  Для одной и той же среды: nф> nк , vф < vк, υф > υк

Значит, в одном и том же веществе скорости света для разных частот (или длин волн) различны. Различны будут и показатели преломления. Следовательно, показатель преломления света в среде зависит от его частоты.

При переходе из одной среды в другую изменяются скорость света и длина волны, частота же, определяющая цвет, остается постоянной. Границы диапазонов белого света и составляющих его цветов принято характеризовать их длинами волн в вакууме. Т. о., белый свет – это совокупность волн длинами от 380 до 760 нм.

(Слайд 16) Дисперсией называют зависимость показателя преломления света от частоты колебаний (или длины волны).

Вам теперь понятно, что означает это определение?

Какие же выводы можно сделать из сегодняшнего урока?

(Слайд 17) Выводы:

  • Дисперсия – явление разложения белого света в спектр.
  • Белый свет – сложный, состоит из монохроматических цветов.
  • Показатель преломления среды зависит от цвета света (фиолетовый, красный)
  • Показатель преломления света в среде зависит от его частоты.

(Слайд 18 ) В 1807 году Томас Юнг сделал столь же важное открытие, что белый свет можно получить сложением красного, зеленого, голубого. Рассмотрите данную модель; действительно, сложение красного, зеленого и голубого дает белый цвет. 

Явление дисперсии света наблюдается не только при прохождении света через призму, но и во многих других случаях преломления. 

(Слайд 19) Именно дисперсия объясняет возникновение такого явления, как гало. Это явление можно наблюдать зимой в виде кругов, столбов, крестов вокруг Солнца и Луны. Здесь дисперсия наблюдается в ледяных кристалликах.

Зная, что белый свет имеет сложную структуру, можно объяснить удивительное многообразие красок в природе.

Давайте вспомним почему мы видим окружающие тела? (О: Свет, падая на предметы, отражается и попадает в глаз человека). Откуда берется цвет непрозрачных предметов?

Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Красный томат отражает только красные цвета, остальные же им поглощаются.

Цвета непрозрачных тел определяется цветом тех лучей, которые они отражают. Кстати, человеческий глаз способен различить 250 цветов, которые образуются при смешивании основных цветов.

Лист белой бумаги отражает все падающие на него лучи различных цветов. Лист черной бумаги поглощает все падающие на него лучи различных цветов.

Вне нас нет никаких красок, есть лишь волны разных длин.

Как же можно объяснить цвета прозрачных тел?

При пропускании белого света через окрашенное стекло оно пропускает тот цвет, в который окрашено. Это свойство используется в различных светофильтрах.

1. Светофор дает три сигнала – красный, желтый, зеленый, а лампа внутри него белая. Объясните с точки зрения оптики, как получаются разноцветные сигналы светофора.

2. На тетради написано красным карандашом “отлично” и зеленым — “хорошо”. Имеются два стекла – зеленое и красное. Через какое стекло надо смотреть, чтобы увидеть слово “отлично”?

3. Почему только достаточно узкий световой пучок дает спектр после прохождения сквозь призму, а у широкого пучка окрашенными оказываются лишь края?

4. На сером фоне сцены находится фигура в красном. Каким светом её надо осветить, чтобы создать видимость исчезновения?)

Домашнее задание (слайд 20)

§53 учебника “Физика” Мякишева Г.Я., Буховцева Б.Б.

Подготовить сообщения :

  1. Дисперсия света в природе

  2. Дисперсия света в искусстве

Источник: https://infourok.ru/prezentaciya-i-konspekt-uroka-po-fizike-na-temu-dispersiya-sveta-3507804.html

Что такое дисперсия света – открытие Ньютона, что нужно знать

Что такое дисперсия света в физике кратко. Дисперсия света в природе и искусстве

Пока ученые не объяснили видимые природные явления, когда все цвета выстраиваются в определенном порядке или мигрируют один в другой (радуга, северное сияние), людям казалось это чем-то волшебным. Сейчас мы понимаем, что это происходит из-за преломления солнечного потока. Но давайте разберемся в этом явлении чуть глубже.  Что представляет собой дисперсия света?

Определение дисперсии света

Солнце проходит через прозрачные или условно прозрачные вещества, такие как вода, стекло, хрусталь. При этом белый луч, который мы считаем бесцветным, раскладывается на составляющие его радужные цвета.

Это происходит из-за того, что волны, попадая из одного вещества в другое, частично или полностью меняют свое направление. Такое изменение направления называется преломлением.

Но почему поток из белого, превращается в разноцветный? Это объясняется тем, что он не монохромный, а как раз содержит в себе весь цветовой ряд. Когда диапазоны всех цветов сливаются, мы видим белое излучение. При этом каждый цвет имеет разную длину волны. И в зависимости от нее по-своему меняет угол преломления.

Например, для зеленого диапазона угол отклонения будет больше, чем для оранжевого, а для синего больше, чем для зеленого. При этом скорость распространения изменяется при прохождении через другую среду, а вот частота остается прежней.

Объяснив эти наблюдения, можно дать определение такому понятию, как разложение белого света на составляющие.

Дисперсия — это зависимость показателя преломления от длины волны, или зависимость скорости света в веществе от длины волны. Это определение можно представить в виде формулы:  n = f(v) или n = f(v), где

n — показатель приломления, λ — длина, а ν — частота.

Где встречается в природе

Разложение волнового потока в природе мы наблюдаем часто, но порой даже не догадываемся, что это дисперсия.

  • Солнце на заходе, окрашивает все в красный или оранжевый цвет. Это происходит из-за разложения освещения в среде газа, который составляет нашу атмосферу.
  • На дне аквариума или водоема с достаточно прозрачной водой мы можем видеть радужные блики. Это солнечный диапазон, преломленный в воде, раскладывается на цветовой спектр.
  • Бриллианты, огранённый хрусталь, фиониты переливаются всеми гранями при ярком освещении.

Первые шаги на пути к открытию дисперсии

Еще задолго до того, как явление разложение спектра было описано и объяснено с точки зрения современной физики и представлений о волновой природе облучения, люди наблюдали и пытались понять суть этого явления.

Древнегреческий ученый Аристотель еще в 3 веке до н.э. активно изучал и пытался дать объяснение некоторым свойствам светового потока. Он наблюдал дисперсию света в природе и даже пытался экспериментально выяснить, как устроено солнечное излучение.

Так он выяснил, что солнечные лучи могут иметь разный цвет. И попытался описать суть этого явления. Ученый объяснил это тем, что разный оттенок свет приобретает из-за разного «количества темноты» в нем. Если темноты много, тогда освещение становится фиолетовым, если мало, то красным.

Уже тогда ученый сделал предположение, что белый спектр является основным и состоит из множества оттенков.

Открытие Ньютона

Конечно, первым, кто экспериментально доказал и описал зависимость преломления светового потока от длины волны, был Исаак Ньютон. С 1666 года он активно занимался изучением явления преобразования бесцветного диапазона.

В солнечный день ученый затемнил комнату и оставил только небольшой просвет в окне, через который проходила тонкая полоска солнца. Ньютон поставил треугольную хрустальную призму, чтобы на нее попадал луч. Пройдя через прозрачный хрусталь, белый свет превратился в ряд разноцветных полос.

Цвета были расположены строго по порядку от красного до фиолетового. Ученый выделил семь полос разного оттенка и назвал этот ряд спектром (от латинского видимый).

Сегодня для опытного наблюдения разложения диапазона применяют дифракционные решетки. Это стеклянные пластины с нанесенными бороздками и тонкими отверстиями. С помощью них можно наблюдать разложение не только цветового спектра, но и расщепление самого луча.

Советуем посмотреть видео:

Аномальная дисперсия

Нормальная дисперсия характеризуется тем, что чем выше частота излучения, тем больше угол преломления.

Аномальная же — это разновидность обычного расщипления видимого диапазона, когда при распространении света в веществе показатель преломления уменьшается с увеличением частоты светового потока. То есть обратная зависимость.

На практике отличия между двумя видами явлений можно увидеть в парах некоторых газов. При разложении луча красные волны преломляются больше чем синие, а некоторый диапазон поглощается веществом.

Источник: https://LampaSveta.com/teoriya/dispersiya-sveta

Дисперсия света – Класс!ная физика

Что такое дисперсия света в физике кратко. Дисперсия света в природе и искусстве

«Физика – 11 класс»

Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то, что изображение, даваемое объективом, по краям окрашено.

Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, которых до того времени никто даже не подозревал» (слова из надписи на надгробном памятнике Ньютону).

Радужную окраску изображения, получаемого с помощью линзы, наблюдали, конечно, и до него. Было замечено также, что радужные края имеют предметы, рассматриваемые через призму.

Пучок световых лучей, прошедших через призму, окрашивается по краям.

Опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в ставне.

Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов.

Стилизованное изображение опыта Ньютона показано на рисунке. Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов, Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный.

Саму радужную полоску Ньютон назвал спектром.

Закрыв отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрыв синим стеклом — синее пятно и т. д. Это означало, что не призма окрашивает белый свет, как предполагалось раньше.

Призма не изменяет свет, а лишь разлагает его на составные части.

Белый свет имеет сложный состав. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета.

В самом деле, если с помощью второй призмы, повернутой на 180° относительно первой, собрать все пучки спектра, то опять получится белый свет.

Выделив какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски.

Другой важный вывод, к которому пришел Ньютон, был сформулирован им в трактате «Оптика» следующим образом: «Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости» (для них стекло имеет различные показатели преломления).
Наиболее сильно преломляются фиолетовые лучи, меньше других — красные.

Зависимость показателя преломления света от его цвета Ньютон назвал дисперсией.

Показатель преломления зависит и от скорости света в веществе.

Абсолютный показатель преломления Луч красного цвета преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового света наименьшая. Именно поэтому призма и разлагает свет.

В пустоте скорости света разного цвета одинаковы. Если бы это было не так, то, к примеру, спутник Юпитера Ио, который наблюдал Рёмер, казался бы красным в момент выхода спутника из тени.

Но этого не наблюдается.

Впоследствии была выяснена зависимость цвета от физической характеристики световой волны: ее частоты колебаний ν (или длины волны λ).
Поэтому можно дать более глубокое определение дисперсии, чем то, к которому пришел Ньютон.

Дисперсией называется зависимость показателя преломления среды от частоты световой волны.

Зная, что белый свет имеет сложный состав, можно объяснить удивительное многообразие красок в природе.
Если предмет, например лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым.

Покрывая бумагу слоем красной краски, мы не создаем при этом свет нового цвета, но задерживаем на листе некоторую часть имеющегося.
Отражаться теперь будут только красные лучи, остальные же поглотятся слоем краски.

Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные.
Если посмотреть на траву через красное стекло, пропускающее только красные лучи, то она будет казаться почти черной.

Явление дисперсии, открытое Ньютоном, — первый шаг к пониманию природы цвета.
Основательно понять дисперсию смогли лишь после того, как была выяснена зависимость цвета от частоты колебаний (или длины световой волны).

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Интерференция механических волн»
Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Световые волны. Физика, учебник для 11 класса – Класс!ная физика

Оптика — Скорость света — Принцип Гюйгенса. Закон отражения света — Закон преломления света — Полное отражение — Линза — Построение изображения в линзе — Формула тонкой линзы. Увеличение линзы — Примеры решения задач.

Геометрическая оптика — Дисперсия света — Интерференция механических волн — Интерференция света — Некоторые применения интерференции — Дифракция механических волн — Дифракция света — Дифракционная решетка — Поперечность световых волн.

Поляризация света — Поперечность световых волн и электромагнитная теория света — Примеры решения задач. Волновая оптика — Краткие итоги главы

Источник: http://class-fizika.ru/11_97.html

Мед-Центр Здоровье
Добавить комментарий